Hbase基本原理剖析

这篇具有很好参考价值的文章主要介绍了Hbase基本原理剖析。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、基本原理

数据存储使用HBase来承接,HBase是一个开源的、面向列(Column-Oriented)、适合存储海量非结构化数据或半结构化数据的、具备高可靠性、高性能、可灵活扩展伸缩的、支持实时数据读写的分布式存储系统。更多关于HBase的信息,请参见:https://hbase.apache.org/。

存储在HBase中的表的典型特征:

  • 大表(BigTable):一个表可以有上亿行,上百万列
  • 面向列:面向列(族)的存储、检索与权限控制
  • 稀疏:表中为空(null)的列不占用存储空间

二、HBase结构

HBase集群由主备Master进程和多个RegionServer进程组成。如下图所示。

Hbase基本原理剖析,hbase,数据库,大数据

模块说明如下表所示:

名称 描述
Master 又叫HMaster,在HA模式下,包含主用Master和备用Master。1.主用Master:负责HBase中RegionServer的管理,包括表的增删改查;RegionServer的负载均衡,Region分布调整;Region分裂以及分裂后的Region分配;RegionServer失效后的Region迁移等。2.备用Master:当主用Master故障时,备用Master将取代主用Master对外提供服务。故障恢复后,原主用Master降为备用。
Client Client使用HBase的RPC机制与Master、RegionServer进行通信。Client与Master进行管理类通信,与RegionServer进行数据操作类通信。
RegionServer RegionServer负责提供表数据读写等服务,是HBase的数据处理和计算单元。RegionServer一般与HDFS集群的DataNode部署在一起,实现数据的存储功能。
ZooKeeper集群 ZooKeeper为HBase集群中各进程提供分布式协作服务。各RegionServer将自己的信息注册到ZooKeeper中,主用Master据此感知各个RegionServer的健康状态。
HDFS集群 HDFS为HBase提供高可靠的文件存储服务,HBase的数据全部存储在HDFS中。

三、HBase原理

  • HBase数据模型

HBase以表的形式存储数据,数据模型如下图HBase数据模型所示。表中的数据划分为多个Region,并由Master分配给对应的RegionServer进行管理。

每个Region包含了表中一段RowKey区间范围内的数据,HBase的一张数据表开始只包含一个Region,随着表中数据的增多,当一个Region的大小达到容量上限后会分裂成两个Region。您可以在创建表时定义Region的RowKey区间,或者在配置文件中定义Region的大小。
Hbase基本原理剖析,hbase,数据库,大数据

  • 概念介绍
名称 描述
RowKey 行键,相当于关系表的主键,每一行数据的唯一标识。字符串、整数、二进制串都可以作为RowKey。所有记录按照RowKey排序后储。
Timestamp 每次数据操作对应的时间戳,数据按时间戳区分版本,每个Cell的多个版本的数据按时间倒序存储。
Cell HBase最小的存储单元,由Key和Value组成。Key由row、column family、column qualifier、timestamp、type、MVCC version这6个字段组成。Value就是对应存储的二进制数据对象。
Column Family 列族,一个表在水平方向上由一个或多个Column Family组成。一个CF(Column Family)可以由任意多个Column组成。Column是CF下的一个标签,可以在写入数据时任意添加,因此CF支持动态扩展,无需预先定义Column的数量和类型。HBase中表的列非常稀疏,不同行的列的个数和类型都可以不同。此外,每个CF都有独立的生存周期(TTL)。可以只对行上锁,对行的操作始终是原始的。
Column 列,与传统的数据库类似,HBase的表中也有列的概念,列用于表示相同类型的数据。
  • RegionServer数据存储

RegionServer主要负责管理由HMaster分配的Region,RegionServer的数据存储结构如下图 RegionServer的数据存储结构所示。
Hbase基本原理剖析,hbase,数据库,大数据
上图 RegionServer的数据存储结构中Region的各部分的说明如表 Region结构说明所示。

Region结构说明

名称 描述
Store 一个Region由一个或多个Store组成,每个Store对应图 HBase数据模型中的一个Column Family。
MemStore 一个Store包含一个MemStore,MemStore缓存客户端向Region插入的数据,当RegionServer中的MemStore大小达到配置的容量上限时,RegionServer会将MemStore中的数据“flush”到HDFS中。
StoreFile MemStore的数据flush到HDFS后成为StoreFile,随着数据的插入,一个Store会产生多个StoreFile,当StoreFile的个数达到配置的最大值时,RegionServer会将多个StoreFile合并为一个大的StoreFile。
HFile HFile定义了StoreFile在文件系统中的存储格式,它是当前HBase系统中StoreFile的具体实现。
HLog HLog日志保证了当RegionServer故障的情况下用户写入的数据不丢失,RegionServer的多个Region共享一个相同的HLog。
  • 元数据表

元数据表是HBase中一种特殊的表,用来帮助Client定位到具体的Region。元数据表包括“hbase:meta”表,用来记录用户表的Region信息,例如,Region位置、起始RowKey及结束RowKey等信息。

元数据表和用户表的映射关系如下图元数据表和用户表的映射关系所示。
Hbase基本原理剖析,hbase,数据库,大数据

  • 数据操作流程

HBase数据操作流程如下图数据操作流程所示。
Hbase基本原理剖析,hbase,数据库,大数据

  1. 对HBase进行增、删、改、查数据操作时,HBase Client首先连接ZooKeeper获得“hbase:meta”表所在的RegionServer的信息(涉及namespace级别修改的,比如创建表、删除表需要访问HMaster更新meta信息)。
  2. HBase Client连接到包含对应的“hbase:meta”表的Region所在的RegionServer,并获得相应的用户表的Region所在的RegionServer位置信息。
  3. HBase Client连接到对应的用户表Region所在的RegionServer,并将数据操作命令发送给该RegionServer,RegionServer接收并执行该命令从而完成本次数据操作。

为了提升数据操作的效率,HBase Client会在内存中缓存“hbase:meta”和用户表Region的信息,当应用程序发起下一次数据操作时,HBase Client会首先从内存中获取这些信息;当未在内存缓存中找到对应数据信息时,HBase Client会重复上述操作。

四、HBase HA原理与实现方案

HBase中的HMaster负责region分配,当regionserver服务停止后,HMaster把相应region迁移到其他RegionServer。为了解决HMaster单点故障导致HBase正常功能受到影响的问题,引入HMaster HA模式。
Hbase基本原理剖析,hbase,数据库,大数据
HMaster高可用性架构通过在ZooKeeper集群创建ephemeral zookeeper node实现的。

当HMaster两个节点启动时都会尝试在ZooKeeper集群上创建一个znode节点master,先创建的成为Active HMaster,后创建的成为Standby HMaster。

Standby HMaster会在master节点添加监听事件。如果主节点服务停止,就会和zooKeeper集群失去联系,session过期之后master节点会消失。Standby节点通过监听事件(watch event)感知到节点消失,会去创建master节点自己成为Active HMaster,主备倒换完成。如果后续停止服务的节点重新启动,发现master节点已经存在,则进入Standby模式,并对master znode创建监听事件。

当客户端访问HBase时,会首先通过ZooKeeper上的master节点信息找到HMaster的地址,然后与Active HMaster进行连接。

五、HBase和HDFS的关系

HDFS是Apache的Hadoop项目的子项目,HBase利用Hadoop HDFS作为其文件存储系统。HBase位于结构化存储层,Hadoop HDFS为HBase提供了高可靠性的底层存储支持。除了HBase产生的一些日志文件,HBase中的所有数据文件都可以存储在Hadoop HDFS文件系统上。

六、HBase和ZooKeeper的关系

HBase和ZooKeeper的关系如下图 ZooKeeper和HBase的关系所示。
Hbase基本原理剖析,hbase,数据库,大数据文章来源地址https://www.toymoban.com/news/detail-599982.html

  1. HRegionServer以Ephemeral
    node的方式注册到ZooKeeper中。其中ZooKeeper存储HBase的如下信息:HBase元数据、HMaster地址。
  2. HMaster通过ZooKeeper随时感知各个HRegionServer的健康状况,以便进行控制管理。
  3. HBase也可以部署多个HMaster,类似HDFS NameNode,当HMaster主节点出现故障时,HMaster备用节点会通过ZooKeeper获取主HMaster存储的整个HBase集群状态信息。即通过ZooKeeper实现避免HBase单点故障问题的问题。

到了这里,关于Hbase基本原理剖析的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Python读取hbase数据库

    1. hbase连接 首先用hbase shell 命令来进入到hbase数据库,然后用list命令来查看hbase下所有表,以其中表“DB_level0”为例,可以看到库名“baotouyiqi”是拼接的,python代码访问时先连接: 备注:完整代码在最后,想运行的直接滑倒最后复制即可 2. 按条件读取hbase数据 然后按照条件

    2024年04月09日
    浏览(50)
  • 分布式数据库HBase

    HBase是一个高可靠、高性能、 面向列 、可伸缩的分布式数据库,是谷歌BigTable的开源实现,主要用来存储非结构化和把结构化的松散数据。 HBase的目标是处理非常庞大的表,可以通过水平扩展的方式,利用 廉价计算机集群 处理由超过10亿行数据和数百万列元素组成的数据表。

    2024年02月09日
    浏览(55)
  • 【大数据】分布式数据库HBase

    目录 1.概述 1.1.前言 1.2.数据模型 1.3.列式存储的优势 2.实现原理 2.1.region 2.2.LSM树 2.3.完整读写过程 2.4.master的作用 本文式作者大数据系列专栏中的一篇文章,按照专栏来阅读,循序渐进能更好的理解,专栏地址: https://blog.csdn.net/joker_zjn/category_12631789.html?spm=1001.2014.3001.5482 当

    2024年04月27日
    浏览(46)
  • 使用IDEA连接hbase数据库

     Hbase是安装在另一台LINUX服务器上的,需要本地通过JAVA连接HBase数据库进行操作。由于是第一次接触HBase,过程当中百度了很多资料,也遇到了很多的问题。耗费了不少时间才成功连接上。特记录下过程当中遇到的问题。 JAVA连接HBase代码如下: 首先通过POM将需要的JAR包导入。

    2024年02月03日
    浏览(87)
  • HBase的数据库与HadoopEcosyste

    HBase是一个分布式、可扩展、高性能、高可用性的列式存储系统,基于Google的Bigtable设计。HBase是Hadoop生态系统的一个重要组成部分,与Hadoop HDFS、MapReduce、ZooKeeper等产品密切相关。本文将从以下几个方面进行深入探讨: 背景介绍 核心概念与联系 核心算法原理和具体操作步骤

    2024年02月20日
    浏览(41)
  • 大数据NoSQL数据库HBase集群部署

    目录 1.  简介 2.  安装 1. HBase依赖Zookeeper、JDK、Hadoop(HDFS),请确保已经完成前面 2. 【node1执行】下载HBase安装包 3. 【node1执行】,修改配置文件,修改conf/hbase-env.sh文件 4. 【node1执行】,修改配置文件,修改conf/hbase-site.xml文件 5. 【node1执行】,修改配置文件,修改conf/regi

    2024年02月08日
    浏览(49)
  • HBase的数据库容量规划与优化

    HBase的数据库容量规划与优化 HBase是一个分布式、可扩展、高性能的列式存储系统,基于Google的Bigtable设计。它是Hadoop生态系统的一部分,可以与HDFS、MapReduce、ZooKeeper等组件集成。HBase适用于大规模数据存储和实时数据访问场景,如日志处理、实时统计、搜索引擎等。 在实际

    2024年02月20日
    浏览(42)
  • HBase的数据库备份与恢复策略

    HBase是一个分布式、可扩展、高性能的列式存储系统,基于Google的Bigtable设计。它是Hadoop生态系统的一部分,可以与HDFS、MapReduce、ZooKeeper等组件集成。HBase具有高可用性、高可扩展性和高性能等优势,适用于大规模数据存储和实时数据处理。 在实际应用中,数据备份和恢复是

    2024年02月19日
    浏览(56)
  • HBase的数据库安全与权限管理

    HBase是一个分布式、可扩展、高性能的列式存储系统,基于Google的Bigtable设计。它是Hadoop生态系统的一部分,可以与HDFS、MapReduce、ZooKeeper等组件集成。HBase具有高可靠性、高性能和高可扩展性等特点,适用于大规模数据存储和实时数据处理。 在现代企业中,数据安全和权限管

    2024年02月20日
    浏览(42)
  • 大数据NoSQL数据库HBase集群部署——详细讲解~

    HBase 是一种分布式、可扩展、支持海量数据存储的 NoSQL 数据库。 和Redis一样,HBase是一款KeyValue型存储的数据库。 不过和Redis设计方向不同 Redis设计为少量数据,超快检索 HBase设计为海量数据,快速检索 HBase在大数据领域应用十分广泛,现在我们来在node1、node2、node3上部署H

    2024年02月11日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包