【高阶数据结构】跳表

这篇具有很好参考价值的文章主要介绍了【高阶数据结构】跳表。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


一、什么是跳表

skiplist本质上也是一种查找结构,用于解决算法中的查找问题,跟平衡搜索树和哈希表的价值是
一样的,可以作为key或者key/value的查找模型。那么相比而言它的优势是什么的呢?这么等我
们学习完它的细节实现,我们再来对比。

skiplist 是由 William Pugh 发明的,最早出现于他在1990年发表的论文 《Skip Lists: AProbabilistic Alternative to Balanced Trees》

skiplist,顾名思义,首先它是一个list。实际上,它是在有序链表的基础上发展起来的。如果是一
个有序的链表,查找数据的时间复杂度是O(N)

William Pugh开始的优化思路:

  1. 假如我们每相邻两个节点升高一层,增加一个指针,让指针指向下下个节点,如下图b所示。这样所有新增加的指针连成了一个新的链表,但它包含的节点个数只有原来的一半。由于新增加的指针,我们不再需要与链表中每个节点逐个进行比较了,需要比较的节点数大概只有原来的一半。
  2. 以此类推,我们可以在第二层新产生的链表上,继续为每相邻的两个节点升高一层,增加一个指针,从而产生第三层链表。如下图c,这样搜索效率就进一步提高了。
  3. skiplist正是受这种多层链表的想法的启发而设计出来的。实际上,按照上面生成链表的方式,上面每一层链表的节点个数,是下面一层的节点个数的一半,这样查找过程就非常类似二分查找,使得查找的时间复杂度可以降低到O(log n)。但是这个结构在插入删除数据的时候有很大的问题,插入或者删除一个节点之后,就会打乱上下相邻两层链表上节点个数严格的2:1的对应关系。如果要维持这种对应关系,就必须把新插入的节点后面的所有节点(也包括新插入的节点)重新进行调整,这会让时间复杂度重新蜕化成O(n)。
    【高阶数据结构】跳表,数据结构,数据结构,redis
    查找的过程:假如要查找的值是key,那么需要看下一个节点的值是否比key大,如果比key大, 就向下走。如果比key小,就向右走。如果没有找到,就会走到第-1层。
    skiplist的设计为了避免这种问题,做了一个大胆的处理,不再严格要求对应比例关系,而是插入一个节点的时候随机出一个层数。这样每次插入和删除都不需要考虑其他节点的层数,这样就好处理多了。细节过程入下图:
    【高阶数据结构】跳表,数据结构,数据结构,redis

二、跳表的效率如何保证?

上面我们说到,skiplist插入一个节点时随机出一个层数,听起来怎么这么随意,如何保证搜索时的效率呢?
这里首先要细节分析的是这个随机层数是怎么来的。一般跳表会设计一个最大层数maxLevel的限制,其次会设置一个多增加一层的概率p。那么计算这个随机层数的伪代码如下图:
【高阶数据结构】跳表,数据结构,数据结构,redis

在 Redis 的 skiplist 实现中,这两个参数的取值为:p = 1/4maxLevel = 32。注:谷歌的开源项目 LevelDB(小型的 KV 型数据库)也采用了 skiplist,有兴趣的大佬可以了解一下!

根据前面randomLevel()的伪码,我们很容易看出,产生越高的节点层数,概率越低。定量的分析
如下:

  • 节点层数至少为1。而大于1的节点层数,满足一个概率分布。
  • 节点层数恰好等于1的概率为1-p。
  • 节点层数大于等于2的概率为p,而节点层数恰好等于2的概率为p(1-p)。
  • 节点层数大于等于3的概率为p2,而节点层数恰好等于3的概率为p2*(1-p)。
  • 节点层数大于等于4的概率为p3,而节点层数恰好等于4的概率为p3*(1-p)

因此,一个节点的平均层数(也包含的平均指针数目)计算如下:

【高阶数据结构】跳表,数据结构,数据结构,redis
现在很容易计算出:

  • 当p=1/2时,每个节点所包含的平均指针数目为2;
  • 当p=1/4时,每个节点所包含的平均指针数目为1.33。

【高阶数据结构】跳表,数据结构,数据结构,redis

跳表的平均时间复杂度为O(logN),这个推导的过程比较复杂,这里我们稍微提一下。


三、skiplist的实现

【高阶数据结构】跳表,数据结构,数据结构,redis

结点的设计

struct SkiplistNode
{
	int _val;
	vector<SkiplistNode*> _nextV;

	SkiplistNode(int val, int level)
		:_val(val)
		, _nextV(level, nullptr)
	{}
};

因为每个结点的层数是随机的,所以申请一个新节点需要知道其层数和存储的值,通过vector的下标可以表示层数。

整体设计

class Skiplist {
	typedef SkiplistNode Node;
public:
	Skiplist() {
		srand(time(0));

		// 头节点,层数是1
		_head = new SkiplistNode(-1, 1);
	}

private:
	Node* _head; // 哨兵位头节点
	size_t _maxLevel = 32; // 最高的层数
	double _p = 0.25; // 增加一层的概率
};

哨兵位头节点的层数是该跳表中最高的,初始时让哨兵位的层数为1.增加一层的概率是0.25,理论而言,概率越大,效率越高。

节点的随机层数

计算这个随机层数的伪代码如下图:

【高阶数据结构】跳表,数据结构,数据结构,redis

C语言产生随机数

int RandomLevel()
{
	size_t level = 1;
	// rand() ->[0, RAND_MAX]之间
	// rand() 《= RAND_MAX*_p 可以保证增加一层的概率是_p
	// level <= maxLevel 保证随机层数不超过最高层数maxLevel
	while (rand() <= RAND_MAX*_p && level < _maxLevel)
	{
		++level;
	}
	return level;
}

C++产生随机数

int RandomLevel()
{
	static std::default_random_engine generator(std::chrono::system_clock::now().time_since_epoch().count());
	static std::uniform_real_distribution<double> distribution(0.0, 1.0);

	size_t level = 1;
	while (distribution(generator) <= _p && level < _maxLevel)
	{
		++level;
	}

	return level;
}

这里我们需要注意的是:因为C语言产生的随机数范围是0到32767之间的数,范围比较小。不过可以通过加减一些数来扩大随机数的范围。

skiplist的查找

查找的过程:查找是要和下一个节点的值相比,并不是和当前节点的值相比一开始cur在哨兵位头节点的最高层 head,开始进行比较。假如要查找的值为target,如果下一个节点为空或者下一个节点的值比target大,那么cur需要向下一层走;如果下一个节点的值比target下,那么cur向右走。重复上述过程,直至找到或者没找到(没找到的话,cur会去到第-1层,注:层数是从第0层开始的)

bool search(int target) {
	Node* cur = _head;
	int level = _head->_nextV.size() - 1;
	while (level >= 0)
	{
		// 目标值比下一个节点值要大,向右走
		// 下一个节点是空(尾),目标值比下一个节点值要小,向下走
		if (cur->_nextV[level] && cur->_nextV[level]->_val < target)
		{
			// 向右走
			cur = cur->_nextV[level];
		}
		else if (cur->_nextV[level] == nullptr || cur->_nextV[level]->_val > target)
		{
			// 向下走
			--level;
		}
		else
		{
			return true;
		}
	}
	
	return false;
}

skiplist的插入

无论是插入值还是删除值,都需要找到该值的前面的节点,这样才能修改指针的指向关系。我们可以将这个保存前一个指针的操作封装成一个函数,提供给插入和删除接口使用。

vector<Node*> FindPrevNode(int num)
{
	Node* cur = _head;
	int level = _head->_nextV.size() - 1;

	// 插入位置每一层前一个节点指针
	vector<Node*> prevV(level + 1, _head);

	while (level >= 0)
	{
		// 目标值比下一个节点值要大,向右走
		// 下一个节点是空(尾),目标值比下一个节点值要小,向下走
		if (cur->_nextV[level] && cur->_nextV[level]->_val < num)
		{
			// 向右走
			cur = cur->_nextV[level];
		}
		else if (cur->_nextV[level] == nullptr
			|| cur->_nextV[level]->_val >= num)
		{
			// 更新level层前一个
			prevV[level] = cur;

			// 向下走
			--level;
		}
	}

	return prevV;
}

【高阶数据结构】跳表,数据结构,数据结构,redis

void add(int num) {
	vector<Node*> prevV = FindPrevNode(num);
	
	int n = RandomLevel();
	Node* newnode = new Node(num, n);
	
	// 如果n超过当前最大的层数,那就升高一下_head的层数
	if (n > _head->_nextV.size())
	{
		_head->_nextV.resize(n, nullptr);
		prevV.resize(n, _head);
	}
	
	// 链接前后节点
	for (size_t i = 0; i < n; ++i)
	{
		newnode->_nextV[i] = prevV[i]->_nextV[i];
		prevV[i]->_nextV[i] = newnode;
	}
}

删除节点
【高阶数据结构】跳表,数据结构,数据结构,redis

bool erase(int num) {
	vector<Node*> prevV = FindPrevNode(num);

	// 第一层下一个不是val,val不在表中
	if (prevV[0]->_nextV[0] == nullptr || prevV[0]->_nextV[0]->_val != num)
	{
		return false;
	}
	else
	{
		Node* del = prevV[0]->_nextV[0];
		// del节点每一层的前后指针链接起来
		for (size_t i = 0; i < del->_nextV.size(); i++)
		{
			prevV[i]->_nextV[i] = del->_nextV[i];
		}
		delete del;

		// 如果删除最高层节点,把头节点的层数也降一下
		int i = _head->_nextV.size() - 1;
		while (i >= 0)
		{
			if (_head->_nextV[i] == nullptr)
				--i;
			else
				break;
		}
		_head->_nextV.resize(i + 1);

		return true;
}

注意:如果删除的节点的层数是最高的,那么可以将哨兵位头结点的层数降一降。如何判断删除的节点层数是不是最高的呢?从哨兵位头结点的最高层其,如果该层的指针指向空,那么就说明删除的节点层数最高。当前层指针指向空,那么就需要看下一层指针是否指向空。以此类推,直至指针不在指向空,那么就可以求出删除最高节点后剩余节点的最高层数了。

【高阶数据结构】跳表,数据结构,数据结构,redis

打印跳表

void Print()
{
	Node* cur = _head;
	while (cur)
	{
		printf("%2d\n", cur->_val);
		// 打印每个每个cur节点
		for (auto e : cur->_nextV)
		{
			printf("%2s", "↓");
		}	
		printf("\n");

		cur = cur->_nextV[0];
	}
}

打印跳表函数可以让我们更好的观察跳表的样子。

完整代码

#include <iostream>
#include <vector>
#include <time.h>
#include <random>
#include <chrono>
using namespace std;

struct SkiplistNode
{
	int _val;
	vector<SkiplistNode*> _nextV;

	SkiplistNode(int val, int level)
		:_val(val)
		, _nextV(level, nullptr)
	{}
};

class Skiplist {
	typedef SkiplistNode Node;
public:
	Skiplist() {
		srand(time(0));

		// 头节点,层数是1
		_head = new SkiplistNode(-1, 1);
	}

	bool search(int target) {
		Node* cur = _head;
		int level = _head->_nextV.size() - 1;
		while (level >= 0)
		{
			// 目标值比下一个节点值要大,向右走
			// 下一个节点是空(尾),目标值比下一个节点值要小,向下走
			if (cur->_nextV[level] && cur->_nextV[level]->_val < target)
			{
				// 向右走
				cur = cur->_nextV[level];
			}
			else if (cur->_nextV[level] == nullptr || cur->_nextV[level]->_val > target)
			{
				// 向下走
				--level;
			}
			else
			{
				return true;
			}
		}

		return false;
	}

	vector<Node*> FindPrevNode(int num)
	{
		Node* cur = _head;
		int level = _head->_nextV.size() - 1;

		// 插入位置每一层前一个节点指针
		vector<Node*> prevV(level + 1, _head);

		while (level >= 0)
		{
			// 目标值比下一个节点值要大,向右走
			// 下一个节点是空(尾),目标值比下一个节点值要小,向下走
			if (cur->_nextV[level] && cur->_nextV[level]->_val < num)
			{
				// 向右走
				cur = cur->_nextV[level];
			}
			else if (cur->_nextV[level] == nullptr
				|| cur->_nextV[level]->_val >= num)
			{
				// 更新level层前一个
				prevV[level] = cur;

				// 向下走
				--level;
			}
		}

		return prevV;
	}

	void add(int num) {
		vector<Node*> prevV = FindPrevNode(num);

		int n = RandomLevel();
		Node* newnode = new Node(num, n);

		// 如果n超过当前最大的层数,那就升高一下_head的层数
		if (n > _head->_nextV.size())
		{
			_head->_nextV.resize(n, nullptr);
			prevV.resize(n, _head);
		}

		// 链接前后节点
		for (size_t i = 0; i < n; ++i)
		{
			newnode->_nextV[i] = prevV[i]->_nextV[i];
			prevV[i]->_nextV[i] = newnode;
		}
	}

	bool erase(int num) {
		vector<Node*> prevV = FindPrevNode(num);

		// 第一层下一个不是val,val不在表中
		if (prevV[0]->_nextV[0] == nullptr || prevV[0]->_nextV[0]->_val != num)
		{
			return false;
		}
		else
		{
			Node* del = prevV[0]->_nextV[0];
			// del节点每一层的前后指针链接起来
			for (size_t i = 0; i < del->_nextV.size(); i++)
			{
				prevV[i]->_nextV[i] = del->_nextV[i];
			}
			delete del;

			// 如果删除最高层节点,把头节点的层数也降一下
			int i = _head->_nextV.size() - 1;
			while (i >= 0)
			{
				if (_head->_nextV[i] == nullptr)
					--i;
				else
					break;
			}
			_head->_nextV.resize(i + 1);

			return true;
		}

		
	}

	//int RandomLevel()
	//{
	//	size_t level = 1;
	//	// rand() ->[0, RAND_MAX]之间
	//	while (rand() <= RAND_MAX*_p && level < _maxLevel)
	//	{
	//		++level;
	//	}

	//	return level;
	//}

	int RandomLevel()
	{
		static std::default_random_engine generator(std::chrono::system_clock::now().time_since_epoch().count());
		static std::uniform_real_distribution<double> distribution(0.0, 1.0);

		size_t level = 1;
		while (distribution(generator) <= _p && level < _maxLevel)
		{
			++level;
		}

		return level;
	}

	void Print()
	{
		/*int level = _head->_nextV.size();
		for (int i = level - 1; i >= 0; --i)
		{
			Node* cur = _head;
			while (cur)
			{
				printf("%d->", cur->_val);
				cur = cur->_nextV[i];
			}
			printf("\n");
		}*/

		Node* cur = _head;
		while (cur)
		{
			printf("%2d\n", cur->_val);
			// 打印每个每个cur节点
			for (auto e : cur->_nextV)
			{
				printf("%2s", "↓");
			}	
			printf("\n");

			cur = cur->_nextV[0];
		}
	}
	
private:
	Node* _head;
	size_t _maxLevel = 32;
	double _p = 0.5;
};

四、skiplist跟平衡搜索树和哈希表的对比

  • skiplist 相比平衡搜索树(AVL 树和红黑树)对比,都可以做到遍历数据有序,时间复杂度也差不多。skiplist 的优势是:a、skiplist 实现简单,容易控制。平衡树增删查改遍历都更复杂。b、skiplist 的额外空间消耗更低。平衡树节点存储每个值有三叉链,平衡因子或者颜色等消耗。skiplist 中 p = 1 / 2 时,每个节点所包含的平均指针数目为 2;skiplist 中 p = 1 / 4 时,每个节点所包含的平均指针数目为 1.33;
  • skiplist 相比哈希表而言,就没有那么大的优势了。相比而言,a、哈希表平均时间复杂度是 O(1),比 skiplist快。b、哈希表空间消耗略多一点。skiplist 优势如下:a、遍历数据有序。b、skiplist 空间消耗略小一点,哈希表存在链接指针和表空间消耗。c、哈希表扩容有性能损耗。d、哈希表在极端场景下哈希冲突高,效率下降厉害,需要红黑树补足接力。

【高阶数据结构】跳表,数据结构,数据结构,redis文章来源地址https://www.toymoban.com/news/detail-600168.html


到了这里,关于【高阶数据结构】跳表的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Redis从入门到精通【高阶篇】之底层数据结构压缩列表(ZipList)详解

    前面的Redis从入门到精通的基础篇和进阶篇都是在使用层面和概念层面,本章节,我们了解一下redis的底层数据结构,上几个章节,我们讲了SDS,字典 。本章节我们聊一下ZipList。 压缩列表(ZipList)就是redis为了节约内存而设计开发的数据结构,并且作为列表键和哈希键的底层

    2024年02月08日
    浏览(87)
  • Redis从入门到精通【高阶篇】之底层数据结构整数集(IntSet)详解

    上个篇章回顾,我们上个章节我们学习了《Redis从入门到精通【高阶篇】之底层数据结构字典(Dictionary)详解》,我们从源码层了解字典是一种以键值对(key-value)形式存储数据的数据结构。在 Redis 中,字典使用哈希表来实现。哈希表是一种以常数时间复杂度 O(1) 进行插入、删

    2024年02月09日
    浏览(40)
  • 数据结构---跳表

    在前面的学习过程中我们学习过链表这个容器,这个容器在头部和尾部插入数据的时间复杂度为O(1),但是该容器存在一个缺陷就是不管数据是否有序查找数据是否存在的时间复杂度都是O(N),我们只能通过暴力循环的方式查找数据是否存在,尽管数据是有序的我们也不能通过二

    2024年02月13日
    浏览(35)
  • 算法与数据结构-跳表

    对于一个单链表来讲,即便链表中存储的数据是有序的,如果我们要想在其中查找某个数据,也只能从头到尾遍历链表。这样查找效率就会很低,时间复杂度会很高,是 O(n)。 那怎么来提高查找效率呢?如果像图中那样,对链表建立一级“索引”,查找起来是不是就会更快一

    2024年02月13日
    浏览(43)
  • 数据结构:跳表讲解

    1.1简介 skiplist本质上也是一种 查找结构 ,用于解决算法中的查找问题,跟 平衡搜索树和哈希表 的价值是一样的,可以 作为key或者key/value的查找模型 。后面我会进行比对。 skiplist是由 William Pugh发明 的,最早出现于他在1990年发表的论文《Skip Lists: A Probabilistic Alternative to Ba

    2024年02月22日
    浏览(39)
  • 【数据结构】3.跳表和散列

    跳表可以近似实现二分查找的效果 以下面长度为7的链表举例,该跳表通过3条链表进行存储。假设要查找元素80: 首先在第2级链表查找,因为80大于40,所以在第3个节点右侧查找 然后在第1级链表查找,因为80大于75,所以在第5个节点右侧查找 最后在第0级链表查找,找到元素

    2024年02月08日
    浏览(43)
  • 数据结构:跳表的原理和运用

    本篇总结的是跳表的相关内容 skiplist 本质上也是一种查找结构,用于解决算法中的查找问题,跟平衡搜索树和哈希表的价值是一样的,可以作为 key 或者 key/value 的查找模型 假如我们每相邻两个节点升高一层,增加一个指针,让指针指向下下个节点,如下图所示。这样所有新

    2024年02月22日
    浏览(46)
  • 数据结构与算法05:跳表和散列表

    目录 【跳表】 跳表的实现原理 如何确定跳表的层高? 【散列表】 散列函数的设计 散列冲突 (1)开放寻址法(Open Addressing) (2)链表法(chaining) 装载因子 如何设计一个比较合理高效的散列表? 散列表的应用:单词拼写检查 散列表的应用:LRU缓存淘汰算法 【每日一练

    2024年02月07日
    浏览(49)
  • 【算法&数据结构体系篇class36】有序表 (中篇)SB树、跳表

    1 )让每一个叔叔节点为头的数,节点个数都不少于其任何一个侄子节点 2 )也是从底层被影响节点开始向上做路径每个节点检查 3 )与 AVL 树非常像,也是四种违规类型: LL 、 RR 、 LR 、 RL 4 )与 AVL 树非常像,核心点是: LL (做一次右旋)、 RR (做一次左旋) LR 和 RL (利

    2024年02月03日
    浏览(75)
  • 【高阶数据结构】——并查集

    在一些应用问题中, 需要将n个不同的元素划分成一些不相交的集合。开始时,每个元素自成一个单元素集合, 然后按一定的规律将归于同一组元素的集合合并 。在此过程中要 反复用到查询某一个元素归属于那个集合的运算 。适合于描述这类问题的抽象数据类型称为 并查集

    2024年02月16日
    浏览(37)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包