with torch.no_grad() 详解

这篇具有很好参考价值的文章主要介绍了with torch.no_grad() 详解。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

  • 在使用pytorch时,并不是所有的操作都需要进行计算图的生成,只是想要网络结果的话就不需要后向传播 ,如果你想通过网络输出的结果去进一步优化网络的话 就需要后向传播了。

  • 不使用with torch.no_grad():此时有grad_fn=属性,表示,计算的结果在一计算图当中,可以进行梯度反传等操作。

  • 使用with torch.no_grad():表明当前计算不需要反向传播,使用之后,强制后边的内容不进行计算图的构建

  • 示例如下:

with torch.no_grad():,函数,python,人工智能,深度学习
with torch.no_grad():,函数,python,人工智能,深度学习文章来源地址https://www.toymoban.com/news/detail-600598.html

  • 此时的outputs没有 属性。
    with torch.no_grad():,函数,python,人工智能,深度学习
    with torch.no_grad():,函数,python,人工智能,深度学习
  • 可以看到,此时有grad_fn=属性,表示,计算的结果在一计算图当中,可以进行梯度反传等操作。但是,两者计算的结果实际上是没有区别的。

到了这里,关于with torch.no_grad() 详解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【学习】pytorch中with torch.no_grad():和 model.eval()的区别

    model.eval()和with torch.no_grad()的区别 先给出结论: 这两个的所起的作用是不同的。 model.eval()的作用是不启用Batch Normalization 和 Dropout. 相当于告诉网络,目前在eval模式,dropout层不会起作用(而在训练阶段,dropout会随机以一定的概率丢弃掉网络中间层的神经元,而且在实际操作

    2024年02月22日
    浏览(51)
  • python:torch.no_grad()的作用 + requires_grad,grad_fn,grad的含义及使用

    requires_grad: grad_fn: grad: 说法1: 说法2: 代码: 保证param原地数值改变操作下requires_grad=True不变。 参考资料: requires_grad,grad_fn,grad的含义及使用 测试torch.no_grad()的作用 pytorch中torch.no_grad有什么用? PyTorch 中的“with torch no_grad”有什么作用?

    2024年02月17日
    浏览(45)
  • 深入理解PyTorch中的train()、eval()和no_grad()

    ❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️ 👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博相关......)👈 (封面图由文心一格生成) 在PyTorch中,train()、eval()和no_grad()是三个非常重

    2023年04月08日
    浏览(49)
  • 详解torch.nn.utils.clip_grad_norm_ 的使用与原理

    本文是对梯度剪裁: torch.nn.utils.clip_grad_norm_()文章的补充。所以可以先参考这篇文章 从上面文章可以看到, clip_grad_norm 最后就是对所有的梯度乘以一个 clip_coef ,而且乘的前提是 clip_coef一定是小于1的 ,所以,按照这个情况: clip_grad_norm 只解决梯度爆炸问题,不解决梯度消失

    2023年04月08日
    浏览(38)
  • Conda、Git、pip设置代理教程 解决Torch not compiled with CUDA enabled问题 pip缓存坑 No module named “Crypto“

    总结 在使用Conda时,如果您需要通过代理访问网络资源,可以按照以下步骤配置代理: 打开终端并运行以下命令以设置HTTP代理: 请将“代理服务器”和“端口号”替换为您的代理服务器和端口号。例如,如果您使用的代理服务器是“proxy.example.com”,端口号是“8080”,则命

    2024年02月09日
    浏览(50)
  • 【深度学习框架-torch】torch.norm函数详解用法

    torch版本 1.6 dim是matrix norm 如果 input 是 matrix norm ,也就是维度大于等于2维,则 P值默认为 fro , Frobenius norm 可认为是与计算向量的欧氏距离类似 有时候为了比较真实的矩阵和估计的矩阵值之间的误差 或者说比较真实矩阵和估计矩阵之间的相似性,我们可以采用 Frobenius 范数。

    2024年02月10日
    浏览(51)
  • 【Python从入门到人工智能】14个必会的Python内置函数(6)——打印输出 (详细语法参考+参数说明+具体示例) | 详解Python中的打印输出!附综合案例!

      你有不伤别人的教养,却缺少一种不被别人伤害的气场,若没有人护你周全,就请你以后善良中带点锋芒,为自己保驾护航。   🎯作者主页: 追光者♂🔥          🌸个人简介:   💖[1] 计算机专业硕士研究生💖   🌟[2] 2022年度博客之星人工智能领域TOP4🌟   🏅[

    2024年02月15日
    浏览(62)
  • Pytorch函数——torch.gather详解

    在学习强化学习时,顺便复习复习pytorch的基本内容,遇到了 torch.gather() 函数,参考图解PyTorch中的torch.gather函数 - 知乎 (zhihu.com)进行解释。 pytorch官网对函数给出的解释: 即input是一个矩阵,根据dim的值,将index的值替换到不同的维度的 索引 ,当dim为0时,index替代i的值,成为

    2024年01月18日
    浏览(43)
  • 【Pytorch】torch.max() 函数详解

    参数: input (Tensor) – 输入张量 返回输入张量所有元素中的最大值。 输出结果: 返回张量 input 在压缩指定维度 dim 时的最大值及其下标。 输出结果: 返回两张量 input 和 other_input 在对应位置上的最大值形成的新张量。 输出结果: 详解 torch.max 函数

    2024年01月23日
    浏览(49)
  • 【Pytorch】梯度裁剪——torch.nn.utils.clip_grad_norm_的原理及计算过程

    众所周知,梯度裁剪是为了防止梯度爆炸。在训练FCOS算法时,因为训练过程出现了损失为NaN的情况,在github issue有很多都是这种训练过程出现loss为NaN,作者也提出要调整梯度裁剪的超参数,于是理了理梯度裁剪函数 torch.nn.utils.clip_grad_norm_ 的计算过程,方便调参。 torch.nn.u

    2024年02月12日
    浏览(75)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包