np.sin( )函数 (Numpy库)

这篇具有很好参考价值的文章主要介绍了np.sin( )函数 (Numpy库)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

np.sin(a)函数:对a中元素取正弦值。a可以是ndarray数据也可以是单个数据。

当a是单个数据时,np.sin(a)返回一个数据。

import numpy as np
x=np.sin(np.pi/2)
print(x)
#Out: 1.0

当a是ndarray数据时,np.sin(a)返回一个ndarray。

import numpy as np
x=np.sin(np.array([0,np.pi/2,np.pi]))
print(x)
#Out:[0.0000000e+00 1.0000000e+00 1.2246468e-16]

在上文中的np.pi表示π,但是它不可能那么精确真的是π,因此sin(np.pi)计算机计算出来不是准确的零,而是无限接近于0。文章来源地址https://www.toymoban.com/news/detail-600678.html

到了这里,关于np.sin( )函数 (Numpy库)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Numpy入门(3)—线性代数

    线性代数(如矩阵乘法、矩阵分解、行列式以及其他方阵数学等)是任何数组库的重要组成部分,NumPy中实现了线性代数中常用的各种操作,并形成了numpy.linalg线性代数相关的模块。本节主要介绍如下函数: diag :以一维数组的形式返回方阵的对角线(或非对角线)元素,或

    2024年02月12日
    浏览(42)
  • 06-Numpy基础-线性代数

    线性代数(如矩阵乘法、矩阵分解、行列式以及其他方阵数学等)是任何数组库的重要组成部分。 NumPy提供了一个用于矩阵乘法的dot函数(既是一个数组方法也是numpy命名空间中的一个函数) x.dot(y)等价于np.dot(x, y) @符(类似Python 3.5)也可以用作中缀运算符,进行矩阵乘法:

    2024年02月11日
    浏览(40)
  • numpy.linalg--线性代数基础

    NumPy提供了线性代数函数库linalg,该库包含了线性代数所需的所有功能,可以看看下面的说明。 方法 注释 dot 两数组的点积 vdot 两向量的点积 inner 两数组的内积 determinant 数组的行列式 matmul 两数组的矩阵积 inv 求矩阵的逆 solve 求解线性矩阵方程 对于两个数组(一维),计算的是

    2024年02月02日
    浏览(36)
  • 线性代数的学习和整理13: 定义域,值域,到达域 和单射,满射,双射,反函数,逆矩阵

    目录 1 函数与 向量/矩阵 2 初等数学的函数 2.1 函数 2.2 函数的定义:定义域  →映射→  值域 3  高等数学里的函数:定义域和陪域/到达域(非值域)的映射关系 3.1 函数 3.2 单射,满射,双射等都是针对定义域 和 陪域的 3.3 易错地方:值域较小且是被决定的 3.4 单射,满射,

    2024年01月20日
    浏览(47)
  • NumPy 特性:n维数组上的线性代数

    在阅读本教程之前,您应该对 Python 有一定的了解。如果您想恢复记忆,请参考 Python 教程。 如果您想要运行本教程中的示例,您还应该在计算机上安装 matplotlib 和 SciPy。 本教程适用于对线性代数和 NumPy 中的数组有基本了解,并希望了解如何表示和操作 n 维数组的人。特别是

    2024年03月18日
    浏览(46)
  • 线性代数-Python-01:向量的基本运算 - 手写Vector及numpy的基本用法

    https://github.com/Chufeng-Jiang/Python-Linear-Algebra-for-Beginner/tree/main 单位向量叫做 u hat Vector.py _globals.py main_vector.py main_numpy_vector.py

    2024年02月08日
    浏览(41)
  • 线性代数本质系列(一)向量,线性组合,线性相关,矩阵

    本系列文章将从下面不同角度解析线性代数的本质,本文是本系列第一篇 向量究竟是什么? 向量的线性组合,基与线性相关 矩阵与线性相关 矩阵乘法与线性变换 三维空间中的线性变换 行列式 逆矩阵,列空间,秩与零空间 克莱姆法则 非方阵 点积与对偶性 叉积 以线性变换

    2024年02月04日
    浏览(50)
  • 线性代数:线性方程求解、矩阵的逆、线性组合、线性独立

    本文参考www.deeplearningbook.org一书第二章2.3 Identity and Inverse Matrices 2.4 Linear Dependence and Span 本文围绕 线性方程求解 依次介绍矩阵的逆、线性组合、线性独立等线性代数的基础知识点。 本文主要围绕求解线性方程展开,我们先把线性方程写出来,方程如下: 其中,是已知的;,

    2024年02月08日
    浏览(51)
  • 0203逆矩阵-矩阵及其运算-线性代数

    定义7 对于 n n n 阶矩阵A,如果有一个 n n n 阶矩阵B,使 A B = B A = E AB=BA=E A B = B A = E 则说矩阵A是可逆的,并把矩阵B称为A的逆矩阵,简称逆阵。 定理1 若矩阵A可逆,则 ∣ A ∣ ≠ 0 vert Avert not = 0 ∣ A ∣  = 0 证明: A 可逆,即有 A − 1 ,使得 A A − 1 = E ∣ A A − 1 ∣ = ∣ A

    2024年04月13日
    浏览(57)
  • 投影矩阵推导【线性代数】

    如果两个向量垂直,那么满足。但如果两个向量不垂直,我们就将 b 投影到 a 上,就得到了二者的距离,我们也称为向量 b 到直线 a 的误差。这样就有出现了垂直:                (1) 投影向量 p 在直线上,不妨假设  ,那么误差 。带入式(1)中得到: 投影矩阵:  

    2024年02月06日
    浏览(58)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包