【机器学习】了解 AUC - ROC 曲线

这篇具有很好参考价值的文章主要介绍了【机器学习】了解 AUC - ROC 曲线。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、说明

        在机器学习中,性能测量是一项基本任务。因此,当涉及到分类问题时,我们可以依靠AUC - ROC曲线。当我们需要检查或可视化多类分类问题的性能时,我们使用AUC(曲线下面积)ROC(接收器工作特性)曲线。它是检查任何分类模型性能的最重要评估指标之一。

 本博客旨在回答以下问题:

  • 1. 什么是 AUC - ROC 曲线?
  • 2. 定义 AUC 和 ROC 曲线中使用的术语。
  • 3. 如何推测模型的性能?
  • 4. 敏感性、特异性、FPR 和阈值之间的关系。
  • 5. 如何在多类模型中使用 AUC - ROC 曲线?

二、什么是 AUC - ROC 曲线?

        ROC和AUC定义:ROC全称是“受试者工作特征”(Receiver Operating Characteristic)。ROC曲线的面积就是AUC(Area Under the Curve)。

        AUC - ROC 曲线是各种阈值设置下分类问题的性能度量。ROC 是一条概率曲线,AUC 表示可分离性的程度或度量。它告诉模型能够区分类的程度。AUC 越高,模型在将 0 个类预测为 0 和将 1 个类预测为 1 方面越好。以此类推,AUC越高,模型在区分有疾病和无疾病患者方面就越好。

        ROC 曲线使用 TPR 与 FPR 绘制,其中 TPR 在 y 轴上,FPR 在 x 轴上。

【机器学习】了解 AUC - ROC 曲线,机器学习和深度学习,人工智能
AUC - ROC 曲线

 

三、定义 AUC 和 ROC 曲线中使用的术语。

3.1 TPR(真阳性率)/召回率/灵敏度

【机器学习】了解 AUC - ROC 曲线,机器学习和深度学习,人工智能

 

3.2 特异性

【机器学习】了解 AUC - ROC 曲线,机器学习和深度学习,人工智能

 

3.3 FPR

【机器学习】了解 AUC - ROC 曲线,机器学习和深度学习,人工智能

 

四、如何推测模型的性能?

        优秀的模型的 AUC 接近 1,这意味着它具有良好的可分离性。较差的模型的 AUC 接近 0,这意味着它的可分离性度量最差。事实上,这意味着它正在回报结果。它将 0 预测为 1,将 1 预测为 0。当 AUC 为 0.5 时,意味着模型没有任何类别分离能力。 我们来解读一下上面的说法。 众所周知,ROC是一条概率曲线。那么让我们绘制这些概率的分布: 注:红色分布曲线为正类(患病患者),绿色分布曲线为负类(无疾病患者)。

【机器学习】了解 AUC - ROC 曲线,机器学习和深度学习,人工智能

【机器学习】了解 AUC - ROC 曲线,机器学习和深度学习,人工智能

        这是一个理想的情况。当两条曲线完全不重叠时,意味着模型具有理想的可分离性度量。它完全能够区分正类和负类。

【机器学习】了解 AUC - ROC 曲线,机器学习和深度学习,人工智能

【机器学习】了解 AUC - ROC 曲线,机器学习和深度学习,人工智能

        

        当两个分布重叠时,我们引入类型 1 和类型 2 错误。根据阈值,我们可以最小化或最大化它们。当 AUC 为 0.7 时,这意味着模型有 70% 的机会能够区分正类和负类。

【机器学习】了解 AUC - ROC 曲线,机器学习和深度学习,人工智能

【机器学习】了解 AUC - ROC 曲线,机器学习和深度学习,人工智能

        

        这是最糟糕的情况。当AUC约为0.5时,模型没有区分正类和负类的判别能力。

【机器学习】了解 AUC - ROC 曲线,机器学习和深度学习,人工智能

【机器学习】了解 AUC - ROC 曲线,机器学习和深度学习,人工智能

        

        当 AUC 大约为 0 时,模型实际上是在往复类。这意味着模型将负类预测为正类,反之亦然。

五、灵敏度、特异性、FPR 和阈值之间的关系。

        敏感性和特异性成反比。因此,当我们增加灵敏度时,特异性会降低,反之亦然。

敏感性,特异性和敏感性⬆️⬇️,特异性⬇️⬆️

        当我们降低阈值时,我们得到更多的正值,从而增加敏感性并降低特异性。

        同样,当我们增加阈值时,我们会得到更多的负值,从而获得更高的特异性和更低的灵敏度。

        众所周知,FPR 是 1 - 特异性。因此,当我们增加TPR时,FPR也会增加,反之亦然。

TPR,FPR和TPR,FPR⬆️⬆️⬇️⬇️

六、如何在多类模型中使用 AUC ROC 曲线?

        在多类模型中,我们可以使用 One vs ALL 方法绘制 N 个类的 N 个 AUC ROC 曲线。例如,如果您有名为 X、Y 和 Z 的三个类,则将有一个针对 Y 和 Z 分类的 X 的 ROC,另一个针对 Y 分类的 Y 的 ROC,以及针对 Y 和 X 分类的第三个 Z。文章来源地址https://www.toymoban.com/news/detail-600799.html

到了这里,关于【机器学习】了解 AUC - ROC 曲线的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 分类模型评估指标——准确率、精准率、召回率、F1、ROC曲线、AUC曲线

    机器学习模型需要有量化的评估指标来评估哪些模型的效果更好。 本文将用通俗易懂的方式讲解分类问题的混淆矩阵和各种评估指标的计算公式。将要给大家介绍的评估指标有:准确率、精准率、召回率、F1、ROC曲线、AUC曲线。 所有事情都需要评估好坏,尤其是量化的评估指

    2024年02月11日
    浏览(58)
  • 机器学习分类器评价指标详解(Precision, Recall, PR, ROC, AUC等)(一)

    为了系统性地理解机器学习模型的不同评价指标及其之间的关系,我们将从其定义出发,探究其物理含义及彼此之间的联系,并从数学上给出相应的公式推导,以方便后续用到时复习理解。由于篇幅较长,因此将其分为两篇,这是第一部分,第二部分参见:机器学习分类器评

    2024年02月04日
    浏览(45)
  • 机器学习 | 混淆矩阵和ROC曲线

    (1)对于二分类 TP(True Positive):将正类预测为正类数,真实为0,预测也为0 FN(False Negative):将正类预测为负类数,真实为0,预测为1 FP(False Positive):将负类预测为正类数, 真实为1,预测为0 TN(True Negative):将负类预测为负类数,真实为1,预测也为1 则混淆矩阵如下: (2)对

    2024年01月21日
    浏览(46)
  • 机器学习:关于P-R曲线和Roc曲线

    一:关于P-R曲线 :     1:1:何为P-R曲线:      P为precision即 精准率(查准率) ,R为recall即 召回率 ,所以P-R曲线是反映了准确率与召回率之间的关系。一般横坐标为recall,纵坐标为precision。P-R曲线      1.2:P-R曲线作用:      PR曲线常被用在信息提取领域,同时当我们的

    2024年02月13日
    浏览(37)
  • R语言用逻辑回归预测BRFSS中风数据、方差分析anova、ROC曲线AUC、可视化探索

    行为风险因素监测系统(BRFSS)是一项年度电话调查。BRFSS旨在确定成年人口中的风险因素并报告新兴趋势 ( 点击文末“阅读原文”获取完整 代码数据 )。 相关视频 例如,调查对象被询问他们的饮食和每周体育活动、HIV/AIDS状况、可能的吸烟情况、免疫接种、健康状况、健

    2024年02月07日
    浏览(41)
  • 机器学习-ROC曲线:技术解析与实战应用

    本文全面探讨了ROC曲线(Receiver Operating Characteristic Curve)的重要性和应用,从其历史背景、数学基础到Python实现以及关键评价指标。文章旨在提供一个深刻而全面的视角,以帮助您更好地理解和应用ROC曲线在模型评估中的作用。 关注TechLead,分享AI全维度知识。作者拥有10+年

    2024年02月05日
    浏览(46)
  • 机器学习中的ROC曲线理解和实战

    1、ROC曲线,又可以称之为接受者操作特征曲线(Receiver Operating Characteristic Curve), ROC曲线下的面积,称为AUC(Area Under Cureve),可以衡量评估二分类模型的分类好坏。 2、AUC是1乘以的方格中的一部分,起大小在0-1之间,AUC越大说明模型效果越好, AUC=1,是完美的分类器,该模型至少

    2024年02月08日
    浏览(45)
  • 机器学习入门教学——人工智能、机器学习、深度学习

    1、人工智能 人工智能相当于人类的代理人,我们现在所接触到的人工智能基本上都是弱AI,主要作用是正确解释从外部获得的数据,并对这些数据加以学习和利用,以便灵活的实现特定目标和任务。 例如: 阿尔法狗、智能汽车 简单来说: 人工智能使机器像人类一样进行感

    2024年02月09日
    浏览(84)
  • 人工智能、机器学习、深度学习的区别

    人工智能涵盖范围最广,它包含了机器学习;而机器学习是人工智能的重要研究内容,它又包含了深度学习。 人工智能是一门以计算机科学为基础,融合了数学、神经学、心理学、控制学等多个科目的交叉学科。 人工智能是一门致力于使计算机能够模拟、模仿人类智能的学

    2024年02月08日
    浏览(51)
  • 机器学习、人工智能、深度学习三者的区别

    目录 1、三者的关系 2、能做些什么 3、阶段性目标 机器学习、人工智能(AI)和深度学习之间有密切的关系,它们可以被看作是一种从不同层面理解和实现智能的方法。 人工智能(AI):人工智能是一门研究如何使计算机能够模仿人类智能的学科。它涵盖了各种技术和方法,

    2024年02月14日
    浏览(57)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包