第53步 深度学习图像识别:Bottleneck Transformer建模(Pytorch)

这篇具有很好参考价值的文章主要介绍了第53步 深度学习图像识别:Bottleneck Transformer建模(Pytorch)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

基于WIN10的64位系统演示

一、写在前面

(1)Bottleneck Transformer

"Bottleneck Transformer"(简称 "BotNet")是一种深度学习模型,在2021年由Google的研究人员在论文"Bottleneck Transformers for Visual Recognition"中提出。

BotNet的核心思想是将Transformer模型的自注意力机制(Self-Attention Mechanism)引入到了ResNet模型的瓶颈结构中。具体来说,BotNet模型使用Transformer Block来替换了ResNet中的3x3卷积层。这个Transformer Block包含一个自注意力层和一个全连接层(Feed-Forward Network)。

通过这种设计,BotNet模型结合了卷积神经网络(Convolutional Neural Network,CNN)和Transformer模型的优点。它不仅继承了CNN对于局部特征的高效抽取能力,还通过自注意力机制增强了模型对于全局信息的捕获能力。这让BotNet在一些计算机视觉任务上展现出了很好的性能。

尽管Transformer模型在自然语言处理领域的应用较为广泛,但是如BotNet这样将Transformer引入到视觉领域的研究也越来越受到关注,展示出深度学习技术跨领域应用的巨大潜力。

(2)Bottleneck Transformer的码源

本文继续使用Facebook的高级深度学习框架PyTorchImageModels (timm),去网址找具体模型比较麻烦,这里提供个代码:

import timm
# 列出所有可用的模型
models = timm.list_models()
# 过滤出包含"bottleneck_transformer"的模型
botnet_models = [model for model in models if "botnet" in model]
# 打印所有的Bottleneck Transformer模型
for model in botnet_models:
    print(model)

输出如下:

bottleneck 深度学习,《100 Steps to Get ML》—JET学习笔记,深度学习,transformer,pytorch,BotNet,人工智能,图像识别

 可以看到,有五种可使用的TNT版本:botnet26t_256、

botnet50ts_256、halo2botnet50ts_256、lamhalobotnet50ts_256以及sebotnet33ts_256,主要区别在于模型的规模和复杂性。

botnet26t_256:这是一种基于Bottleneck Transformer(BotNet)的模型,它的结构类似于ResNet26,并且采用了Transformer blocks替换了原来ResNet中的一部分卷积层。模型名中的"t"代表使用的Transformer blocks,"26"代表模型中大约有26层卷积或者Transformer层,"256"则表示模型期望的输入图像大小为256x256。

botnet50ts_256:这个模型和上面的模型类似,但是它的大小和复杂性更大,结构类似于ResNet50。此外,模型名中的"s"代表使用了Squeeze-and-Excitation(SE)模块,这是一种可以增强模型的性能的技术。

halo2botnet50ts_256:这个模型在botnet50ts_256的基础上,采用了Halo卷积,这是一种可以提升模型性能的卷积变种。"halo2"表示使用了二阶的Halo卷积。

lamhalobotnet50ts_256:这个模型在halo2botnet50ts_256的基础上,进一步增加了Layer Attention Module(LAM),这是一种可以进一步提升模型性能的技术。

sebotnet33ts_256:这个模型和botnet50ts_256类似,但是它的大小和复杂性较小,结构类似于ResNet33。

二、Bottleneck Transformer迁移学习代码实战

我们继续胸片的数据集:肺结核病人和健康人的胸片的识别。其中,肺结核病人700张,健康人900张,分别存入单独的文件夹中。

(a)导入包

import copy
import torch
import torchvision
import torchvision.transforms as transforms
from torchvision import models
from torch.utils.data import DataLoader
from torch import optim, nn
from torch.optim import lr_scheduler
import os
import matplotlib.pyplot as plt
import warnings
import numpy as np

warnings.filterwarnings("ignore")
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

# 设置GPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

(b)导入数据集

import torch
from torchvision import datasets, transforms
import os

# 数据集路径
data_dir = "./MTB"

# 图像的大小
img_height = 100
img_width = 100

# 数据预处理
data_transforms = {
    'train': transforms.Compose([
        transforms.RandomResizedCrop(img_height),
        transforms.RandomHorizontalFlip(),
        transforms.RandomVerticalFlip(),
        transforms.RandomRotation(0.2),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
    'val': transforms.Compose([
        transforms.Resize((img_height, img_width)),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
}

# 加载数据集
full_dataset = datasets.ImageFolder(data_dir)

# 获取数据集的大小
full_size = len(full_dataset)
train_size = int(0.7 * full_size)  # 假设训练集占80%
val_size = full_size - train_size  # 验证集的大小

# 随机分割数据集
torch.manual_seed(0)  # 设置随机种子以确保结果可重复
train_dataset, val_dataset = torch.utils.data.random_split(full_dataset, [train_size, val_size])

# 将数据增强应用到训练集
train_dataset.dataset.transform = data_transforms['train']

# 创建数据加载器
batch_size = 32
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=True, num_workers=4)

dataloaders = {'train': train_dataloader, 'val': val_dataloader}
dataset_sizes = {'train': len(train_dataset), 'val': len(val_dataset)}
class_names = full_dataset.classes

(c)导入Bottleneck Transformer

# 导入必要的库
import torch.nn as nn
import timm
# 定义Bottleneck Transformer模型
model = timm.create_model('botnet26t_256', pretrained=True)  # 你可以选择适合你需求的BotNet版本
num_ftrs = model.feature_info[-1]['num_chs']
# 根据分类任务修改最后一层
model.head.fc = nn.Linear(num_ftrs, len(class_names))
# 将模型移至指定设备
model = model.to(device)
# 打印模型摘要
print(model)

(d)编译模型

# 定义损失函数
criterion = nn.CrossEntropyLoss()

# 定义优化器
optimizer = optim.Adam(model.parameters())

# 定义学习率调度器
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)

# 开始训练模型
num_epochs = 10
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0

# 初始化记录器
train_loss_history = []
train_acc_history = []
val_loss_history = []
val_acc_history = []

for epoch in range(num_epochs):
    print('Epoch {}/{}'.format(epoch, num_epochs - 1))
    print('-' * 10)

    # 每个epoch都有一个训练和验证阶段
    for phase in ['train', 'val']:
        if phase == 'train':
            model.train()  # Set model to training mode
        else:
            model.eval()   # Set model to evaluate mode

        running_loss = 0.0
        running_corrects = 0

        # 遍历数据
        for inputs, labels in dataloaders[phase]:
            inputs = inputs.to(device)
            labels = labels.to(device)

            # 零参数梯度
            optimizer.zero_grad()

            # 前向
            with torch.set_grad_enabled(phase == 'train'):
                outputs = model(inputs)
                _, preds = torch.max(outputs, 1)
                loss = criterion(outputs, labels)

                # 只在训练模式下进行反向和优化
                if phase == 'train':
                    loss.backward()
                    optimizer.step()

            # 统计
            running_loss += loss.item() * inputs.size(0)
            running_corrects += torch.sum(preds == labels.data)

        epoch_loss = running_loss / dataset_sizes[phase]
        epoch_acc = (running_corrects.double() / dataset_sizes[phase]).item()

        # 记录每个epoch的loss和accuracy
        if phase == 'train':
            train_loss_history.append(epoch_loss)
            train_acc_history.append(epoch_acc)
        else:
            val_loss_history.append(epoch_loss)
            val_acc_history.append(epoch_acc)

        print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))

        # 深拷贝模型
        if phase == 'val' and epoch_acc > best_acc:
            best_acc = epoch_acc
            best_model_wts = copy.deepcopy(model.state_dict())

    print()

print('Best val Acc: {:4f}'.format(best_acc))

(e)Accuracy和Loss可视化

epoch = range(1, len(train_loss_history)+1)

fig, ax = plt.subplots(1, 2, figsize=(10,4))
ax[0].plot(epoch, train_loss_history, label='Train loss')
ax[0].plot(epoch, val_loss_history, label='Validation loss')
ax[0].set_xlabel('Epochs')
ax[0].set_ylabel('Loss')
ax[0].legend()

ax[1].plot(epoch, train_acc_history, label='Train acc')
ax[1].plot(epoch, val_acc_history, label='Validation acc')
ax[1].set_xlabel('Epochs')
ax[1].set_ylabel('Accuracy')
ax[1].legend()

#plt.savefig("loss-acc.pdf", dpi=300,format="pdf")

观察模型训练情况:

bottleneck 深度学习,《100 Steps to Get ML》—JET学习笔记,深度学习,transformer,pytorch,BotNet,人工智能,图像识别

 蓝色为训练集,橙色为验证集。验证集波动很大,但是准确度还是在一开始就很不错。

(f)混淆矩阵可视化以及模型参数

from sklearn.metrics import classification_report, confusion_matrix
import math
import pandas as pd
import numpy as np
import seaborn as sns
from matplotlib.pyplot import imshow

# 定义一个绘制混淆矩阵图的函数
def plot_cm(labels, predictions):
    
    # 生成混淆矩阵
    conf_numpy = confusion_matrix(labels, predictions)
    # 将矩阵转化为 DataFrame
    conf_df = pd.DataFrame(conf_numpy, index=class_names ,columns=class_names)  
    
    plt.figure(figsize=(8,7))
    
    sns.heatmap(conf_df, annot=True, fmt="d", cmap="BuPu")
    
    plt.title('Confusion matrix',fontsize=15)
    plt.ylabel('Actual value',fontsize=14)
    plt.xlabel('Predictive value',fontsize=14)
    
def evaluate_model(model, dataloader, device):
    model.eval()   # 设置模型为评估模式
    true_labels = []
    pred_labels = []
    # 遍历数据
    for inputs, labels in dataloader:
        inputs = inputs.to(device)
        labels = labels.to(device)

        # 前向
        with torch.no_grad():
            outputs = model(inputs)
            _, preds = torch.max(outputs, 1)

        true_labels.extend(labels.cpu().numpy())
        pred_labels.extend(preds.cpu().numpy())
        
    return true_labels, pred_labels

# 获取预测和真实标签
true_labels, pred_labels = evaluate_model(model, dataloaders['val'], device)

# 计算混淆矩阵
cm_val = confusion_matrix(true_labels, pred_labels)
a_val = cm_val[0,0]
b_val = cm_val[0,1]
c_val = cm_val[1,0]
d_val = cm_val[1,1]

# 计算各种性能指标
acc_val = (a_val+d_val)/(a_val+b_val+c_val+d_val)  # 准确率
error_rate_val = 1 - acc_val  # 错误率
sen_val = d_val/(d_val+c_val)  # 灵敏度
sep_val = a_val/(a_val+b_val)  # 特异度
precision_val = d_val/(b_val+d_val)  # 精确度
F1_val = (2*precision_val*sen_val)/(precision_val+sen_val)  # F1值
MCC_val = (d_val*a_val-b_val*c_val) / (np.sqrt((d_val+b_val)*(d_val+c_val)*(a_val+b_val)*(a_val+c_val)))  # 马修斯相关系数

# 打印出性能指标
print("验证集的灵敏度为:", sen_val, 
      "验证集的特异度为:", sep_val,
      "验证集的准确率为:", acc_val, 
      "验证集的错误率为:", error_rate_val,
      "验证集的精确度为:", precision_val, 
      "验证集的F1为:", F1_val,
      "验证集的MCC为:", MCC_val)

# 绘制混淆矩阵
plot_cm(true_labels, pred_labels)

    
# 获取预测和真实标签
train_true_labels, train_pred_labels = evaluate_model(model, dataloaders['train'], device)
# 计算混淆矩阵
cm_train = confusion_matrix(train_true_labels, train_pred_labels)  
a_train = cm_train[0,0]
b_train = cm_train[0,1]
c_train = cm_train[1,0]
d_train = cm_train[1,1]
acc_train = (a_train+d_train)/(a_train+b_train+c_train+d_train)
error_rate_train = 1 - acc_train
sen_train = d_train/(d_train+c_train)
sep_train = a_train/(a_train+b_train)
precision_train = d_train/(b_train+d_train)
F1_train = (2*precision_train*sen_train)/(precision_train+sen_train)
MCC_train = (d_train*a_train-b_train*c_train) / (math.sqrt((d_train+b_train)*(d_train+c_train)*(a_train+b_train)*(a_train+c_train))) 
print("训练集的灵敏度为:",sen_train, 
      "训练集的特异度为:",sep_train,
      "训练集的准确率为:",acc_train, 
      "训练集的错误率为:",error_rate_train,
      "训练集的精确度为:",precision_train, 
      "训练集的F1为:",F1_train,
      "训练集的MCC为:",MCC_train)

# 绘制混淆矩阵
plot_cm(train_true_labels, train_pred_labels)

效果不错:

bottleneck 深度学习,《100 Steps to Get ML》—JET学习笔记,深度学习,transformer,pytorch,BotNet,人工智能,图像识别

 (g)AUC曲线绘制

from sklearn import metrics
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.pyplot import imshow
from sklearn.metrics import classification_report, confusion_matrix
import seaborn as sns
import pandas as pd
import math

def plot_roc(name, labels, predictions, **kwargs):
    fp, tp, _ = metrics.roc_curve(labels, predictions)

    plt.plot(fp, tp, label=name, linewidth=2, **kwargs)
    plt.plot([0, 1], [0, 1], color='orange', linestyle='--')
    plt.xlabel('False positives rate')
    plt.ylabel('True positives rate')
    ax = plt.gca()
    ax.set_aspect('equal')


# 确保模型处于评估模式
model.eval()

train_ds = dataloaders['train']
val_ds = dataloaders['val']

val_pre_auc   = []
val_label_auc = []

for images, labels in val_ds:
    for image, label in zip(images, labels):      
        img_array = image.unsqueeze(0).to(device)  # 在第0维增加一个维度并将图像转移到适当的设备上
        prediction_auc = model(img_array)  # 使用模型进行预测
        val_pre_auc.append(prediction_auc.detach().cpu().numpy()[:,1])
        val_label_auc.append(label.item())  # 使用Tensor.item()获取Tensor的值
auc_score_val = metrics.roc_auc_score(val_label_auc, val_pre_auc)


train_pre_auc   = []
train_label_auc = []

for images, labels in train_ds:
    for image, label in zip(images, labels):
        img_array_train = image.unsqueeze(0).to(device) 
        prediction_auc = model(img_array_train)
        train_pre_auc.append(prediction_auc.detach().cpu().numpy()[:,1])  # 输出概率而不是标签!
        train_label_auc.append(label.item())
auc_score_train = metrics.roc_auc_score(train_label_auc, train_pre_auc)

plot_roc('validation AUC: {0:.4f}'.format(auc_score_val), val_label_auc , val_pre_auc , color="red", linestyle='--')
plot_roc('training AUC: {0:.4f}'.format(auc_score_train), train_label_auc, train_pre_auc, color="blue", linestyle='--')
plt.legend(loc='lower right')
#plt.savefig("roc.pdf", dpi=300,format="pdf")

print("训练集的AUC值为:",auc_score_train, "验证集的AUC值为:",auc_score_val)

ROC曲线如下:

bottleneck 深度学习,《100 Steps to Get ML》—JET学习笔记,深度学习,transformer,pytorch,BotNet,人工智能,图像识别

 应该是目前为止最好的ROC曲线了!

三、写在最后

略~

四、数据

链接:https://pan.baidu.com/s/15vSVhz1rQBtqNkNp2GQyVw?pwd=x3jf

提取码:x3jf 文章来源地址https://www.toymoban.com/news/detail-600864.html

到了这里,关于第53步 深度学习图像识别:Bottleneck Transformer建模(Pytorch)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 第64步 深度学习图像识别:多分类建模误判病例分析(Pytorch)

    一、写在前面 上期我们基于TensorFlow环境介绍了多分类建模的误判病例分析。 本期以健康组、肺结核组、COVID-19组、细菌性(病毒性)肺炎组为数据集,基于Pytorch环境,构建SqueezeNet多分类模型,分析误判病例,因为它建模速度快。 同样,基于GPT-4辅助编程。 二、误判病例分

    2024年02月10日
    浏览(44)
  • 第63步 深度学习图像识别:多分类建模误判病例分析(Tensorflow)

    一、写在前面 上两期我们基于TensorFlow和Pytorch环境做了图像识别的多分类任务建模。这一期我们做误判病例分析,分两节介绍,分别基于TensorFlow和Pytorch环境的建模和分析。 本期以健康组、肺结核组、COVID-19组、细菌性(病毒性)肺炎组为数据集,基于TensorFlow环境,构建mob

    2024年02月10日
    浏览(42)
  • 第54步 深度学习图像识别:MLP-Mixer建模(Pytorch)

    一、写在前面 (1)MLP-Mixer MLP-Mixer(Multilayer Perceptron Mixer)是Google在2021年提出的 一种 新型的 视觉模型结构 。它的主要特点是 完全使用 多层感知机(MLP)来处理图像, 而不是使用常见的卷积(Convolution)或者自注意力(Self-Attention)机制。 MLP-Mixer的结构主要包括两种类型的

    2024年02月16日
    浏览(36)
  • 深度学习-瓶颈结构(Bottleneck)

    1. 简介 论文:Deep Residual Learning for Image Recognition ResNet的核心内容之一即“Deeper Bottleneck Architectures”(简称DBA),一言概之,bottleneck是一种特殊的残差结构。 Resnet论文里的原图如上(即Bottleneck V1 ),左图是普通的残差结构,右图是瓶颈结构。具体而言,block的输入和输出c

    2024年02月15日
    浏览(31)
  • 深度学习与图像识别:如何使用深度学习进行图像识别

    深度学习与图像识别:如何使用深度学习进行图像识别 深度学习是一种基于多层神经网络的机器学习方法,能够从大量的数据中自动提取特征和规律,从而实现复杂的任务,如图像识别。图像识别是指让计算机能够理解和分析图像中的内容,如物体、人脸、场景等。使用深度

    2024年02月05日
    浏览(45)
  • BIT 变化检测模型复现 深度学习学习笔记 基于transformer结构的图像处理模型

    BIT 是用 transformer 结构进行变化检测的一个孪生网络,它的 backbone 用的是 Resnet 结构,具体结构分析可以参考这个链接的作者写的,非常清楚, http://t.csdn.cn/rA9sH。 下面就是来讲我自己的实现过程,比较简单。 首先,在官网找到相应的代码,下载解压到自己的本地。github上面的

    2024年02月10日
    浏览(42)
  • opencv深度学习昆虫识别系统图像识别 python

    文章目录 0 前言+ 1 课题背景+ 2 具体实现+ 3 数据收集和处理+ 3 卷积神经网络+ 2.1卷积层+ 2.2 池化层+ 2.3 激活函数:+ 2.4 全连接层+ 2.5 使用tensorflow中keras模块实现卷积神经网络 4 MobileNetV2网络+ 5 损失函数softmax 交叉熵+ 5.1 softmax函数+ 5.2 交叉熵损失函数 6 优化器SGD+ 7 学习率衰减策

    2024年02月02日
    浏览(60)
  • 论题:基于深度学习的图像识别系统

    本文为论题:基于深度学习的图像识别系统 的编写思路。 目录 摘要: 引言 2.深度学习技术及卷积神经网络原理 3.图像识别系统设计

    2024年02月06日
    浏览(45)
  • 竞赛 深度学习+opencv+python实现昆虫识别 -图像识别 昆虫识别

    🔥 优质竞赛项目系列,今天要分享的是 🚩 **基于深度学习的昆虫识别算法研究与实现 ** 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:4分 创新点:4分 🧿 更多资料, 项目分享: https://git

    2024年02月07日
    浏览(48)
  • 卷积神经网络 —— 图像识别与深度学习

    视频教程学习链接: https://www.icourse163.org/learn/XUST-1206363802?tid=1467124640#/learn/content?type=detailid=1248319353cid=1275090253 原始数据的形式是多种多样的,除了数字之外,还可能是文字、图像、视频、音频等,下面,就以图像识别为例,来了解深度学习在计算机视觉领域中的应用。 图像

    2024年02月05日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包