EMC学习笔记(十八)滤波器设计

这篇具有很好参考价值的文章主要介绍了EMC学习笔记(十八)滤波器设计。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Tips:学习资料来自网络,仅供学习使用。

EMI滤波器设计(汽车电子)

1.标准要求

以汽车电子为例:

低压直流电源口(如乘用车的12VDC,商用车的24VDC)的EMI滤波电路设计形态与拓扑,通常由内部电源电路原始噪声&测试标准等级决定以汽车电子标准CISPR25为例,电源口传导测试共有5个等级:CLASS5、CLASS4、CLASS3、CLASS2、CLASS 1;其中CLASS 5 限值线最低,在电源电路原始噪声一定的情况下,要求EMI滤波电路的插入损耗最大,电源电路原始噪声与原理图设计(功率拓扑、吸收电路、驱动电路、功率器件、滤波器件)、PCB设计(布局布线、层级分配、动点面积、环路面积)、结构&线缆设计(屏蔽、接地、隔离、布线)强相关。

当电源电路干扰噪声&测试标准限值确定后,滤波电路即可进行设计。

EMC学习笔记(十八)滤波器设计,EMC电磁兼容,学习,笔记
EMC学习笔记(十八)滤波器设计,EMC电磁兼容,学习,笔记
EMC学习笔记(十八)滤波器设计,EMC电磁兼容,学习,笔记

2.设计理论

2.1 滤波器电路设计过程

电源口EMI滤波设计,与产品电源口EMI噪声、测试标准等级限值要求有直接关系;在产品未成型之前,滤波电路设计更多的是参考历史经验设计,比如:同类产品相同端口行业内TOP友商做法(即:《产品EMC友商分析》),同类产品相同电源电路拓扑相同端口前期版本做法(即:《产品EMC设计经验总结》)。
真正EMI滤波设计,应在产品成型之后,去掉电源口所有滤波器件(X 电容、Y电容、共模电感),测试电源口 EMI 原始噪声(即: 裸噪声),对原始噪声进行差共模分离,确定差共模原始噪声。根据测试标准限值线,考虑6dB余量,确定滤波电路的差共模插入损耗。根据开关频率的频谱特性,确定Y电容值,通过共模干扰转折频率确定共模电感量。
常规共模电感差模分量约为共模电感量的0.5-1%百分比,可按照0.5%进行计算确定共模电感的差模漏感,通过差模干扰转折频率确定X电容,最终确定滤波电路参数。

EMC学习笔记(十八)滤波器设计,EMC电磁兼容,学习,笔记

2.2 插入损耗定义

在滤波电路设计中,通常用插入损耗来反映使用该滤波电路和未使用前信号功率的损失和衰减程度,插入损耗越大,表示衰减越多,滤波效果越好。

EMC学习笔记(十八)滤波器设计,EMC电磁兼容,学习,笔记

2.3 原始噪声测量

将产品的EMI滤波电路全部拆除,测量原始噪声,但要注意EMI原始噪声较高可能超过接收机量程范围,可在端口增加X电容(如:1uF)、Y电容(如:1nF)最后在最终滤波电路中进行补偿。

EMC学习笔记(十八)滤波器设计,EMC电磁兼容,学习,笔记

2.4 插入损耗计算

将原始差模噪声、原始共模噪声,与标准测试限值线对比,考虑6dB 余量,即可得到关键频点(一般为低频段超标最多的第1个频点,如果有2个或多个,应按照滤波器插入损耗特性,比如:1级滤波器,由CLC组成,应按照60dB/十倍频程进行折算,判断哪个低频段超标点为关键频点)差模插入损耗、共模插入损耗。
EMC学习笔记(十八)滤波器设计,EMC电磁兼容,学习,笔记

2.5 滤波失配原则

为了保证滤波电路获得最大插入损耗,滤波电路拓扑必须遵循失配原则;源阻抗或负载阻抗为高阻时,需匹配电容滤波,源阻抗或负载阻抗为低阻时,需匹配电感滤波。电源EMI滤波器选用形式如下表:

EMC学习笔记(十八)滤波器设计,EMC电磁兼容,学习,笔记

高阻和低阻是相对的,差模回路LISN采样电阻50R串联即为100R;共模回路LISN采样电阻50R并联即为25R;假设差模干扰频率为150kHz,需1uF X电容滤波,电容阻抗为1.1R:假设共模干扰频率为10MHz,需103Y电容滤波,电容阻抗为1.6R;负载阻抗差模100R/共模25R相对X电容11R/Y电容1.6R都为高阻具体到电源EMI滤波电路设计,BOOST电路因有PFC电感存在,假设差模干扰频率为150kHz,PFC电感量为100uH,电感阻抗为94.2R(高阻),故靠近PFC侧滤波电路器件为电容;BUCK电路因有电容存在,假设差模干扰频率为150kHz,差模电容为10uF,电容阻抗为0.1R(低阻),故靠近BUCK电路侧滤波电路器件应为电感。
EMC学习笔记(十八)滤波器设计,EMC电磁兼容,学习,笔记
EMC学习笔记(十八)滤波器设计,EMC电磁兼容,学习,笔记

2.6 滤波拓扑选择

负载阻抗100Q/25R(高阻),故靠近LISN 侧第一级应有X电容和Y电容;源阻抗不确定,电源功率拓扑不同,源阻抗不同;比如:BOOST电路,有PFC电感(高阻);BUCK电路,有X电容(低阻);FLYBACK电路,整流桥后一般有差模电感(高阻);如果干扰源为高阻,则滤波器侧应有X电容和Y电容滤波,如果干扰源为低阻,则滤波器侧应有共模电感(差模电感通过共模电感的差模分量实现)滤波电源口常见EMI滤波有一级滤波和两级滤波,EMI滤波电路如下图:

EMC学习笔记(十八)滤波器设计,EMC电磁兼容,学习,笔记

如果采用一级EMI滤波电路结构,等效共模滤波电路结构为CLC,即:共模插损曲线衰减为60dB/+倍频程,等效差模滤波电路结构为CLC,即:差模插入曲线衰减为60dB/十倍频程。

EMC学习笔记(十八)滤波器设计,EMC电磁兼容,学习,笔记

如果采用两级EMI滤波电路结构,等效共模滤波电路结构为CLCLC,即:模插损曲线衰减为100dB/+倍频程,等效差模滤波电路结构为 CLCLC,即:差模插入曲线衰减为100dB/十倍频程。

2.7 滤波参数计算

一级差模EMI滤波器的插入损耗传递函数及其幅频特性,差模噪声的最小频率
点fTdm,如下图:

EMC学习笔记(十八)滤波器设计,EMC电磁兼容,学习,笔记

EMC学习笔记(十八)滤波器设计,EMC电磁兼容,学习,笔记

差模噪声最小频率点处的插入损耗为:

EMC学习笔记(十八)滤波器设计,EMC电磁兼容,学习,笔记

一级差模EMI滤波器的转折频率为fcdm:

EMC学习笔记(十八)滤波器设计,EMC电磁兼容,学习,笔记

EMC学习笔记(十八)滤波器设计,EMC电磁兼容,学习,笔记
EMC学习笔记(十八)滤波器设计,EMC电磁兼容,学习,笔记
两级差模EMI滤波器的插入损耗传递函数及其幅频特性,差模噪声的最小频率fTdm
如下图:

EMC学习笔记(十八)滤波器设计,EMC电磁兼容,学习,笔记
EMC学习笔记(十八)滤波器设计,EMC电磁兼容,学习,笔记

差模噪声最小频率点处的插入损耗为:

EMC学习笔记(十八)滤波器设计,EMC电磁兼容,学习,笔记

两级差模EMI滤波器的转折频率fcdm为:
EMC学习笔记(十八)滤波器设计,EMC电磁兼容,学习,笔记
EMC学习笔记(十八)滤波器设计,EMC电磁兼容,学习,笔记

EMC学习笔记(十八)滤波器设计,EMC电磁兼容,学习,笔记

如果滤波电路采用两级滤波,Ldm1=Ldm=6.5uH,常规共模电感差模感量约共模感量
0.5%,即:

EMC学习笔记(十八)滤波器设计,EMC电磁兼容,学习,笔记

一般情况下,锰锌材质共模电感量很难做到15.7mH,除非电流非常小(1A及以下),共模电感绕组足够细,绕制圈数足够多,磁芯(锌或非晶)初始磁导率足够高。常规共模电感,小电流(3A 及以下)做到 6mH 比较常见,中等电流(16A左右)做到2mH比较常见,大电流(32A及以上)做到0.8mH 就很不错;对于电流非常大(100A及以上),基本通过锰锌大磁环穿线方式当共模电感进行滤波。如果电路采用一级滤波进行设计,共模电感设计选型非常困难。如果电路采用两级滤波进行设计,共模电感要求1.3mH,就非常容易实现,故采用两级滤波电路设计。
假设Y1 C=1nF,Y2,Y3=C=4.7nF,两级滤波共模转折频率为:
EMC学习笔记(十八)滤波器设计,EMC电磁兼容,学习,笔记

一级滤波共模转折频率为:

EMC学习笔记(十八)滤波器设计,EMC电磁兼容,学习,笔记

2.8 滤波参数确定

通过计算两级滤波转折频率为107kHz,传导测试起始频率为150kHz,共模干扰频段一般在中频段(0.5-5MHz)和高频段(5-30MH),按照100dB/十倍频程计算,1.07MHz频点即有100dB插损,共模滤波电路插入损耗足够,最终两级滤波电路设计为:Y电容(1022)-X电容(1uF)-共模电感(13mH)-Y电容(4722) -X电容(1uF)-共模电感 (1.3mH)-Y电容(472*2)-X电容(1uF)滤波电路如下图:

EMC学习笔记(十八)滤波器设计,EMC电磁兼容,学习,笔记

如上内容,详细阐述电源口滤波电路设计计算过程,所有产品电源口滤波电路设计,除测试标准、测试方法、限值要求、产品形态存在差异外,原理实质是相同的以上设计计算过程供类比参考。文章来源地址https://www.toymoban.com/news/detail-600932.html

到了这里,关于EMC学习笔记(十八)滤波器设计的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 使用C++设计滤波器(低通滤波器,高通滤波器,带通滤波器)

    以下是一个使用C++语言编写的基本低通滤波器的示例代码,它可以对输入信号进行滤波以降低高频成分: 在这个示例中,我们使用一个一阶滤波器来实现低通滤波器。该滤波器具有一个截止频率,所有高于该频率的信号成分都会被过滤掉。在构造函数中,我们根据采样率和截

    2024年02月11日
    浏览(37)
  • FPGA设计FIR滤波器低通滤波器,代码及视频

    名称:FIR滤波器低通滤波器 软件:Quartus 语言:Verilog/VHDL 本资源含有verilog及VHDL两种语言设计的工程,每个工程均可实现以下FIR滤波器的功能。 代码功能: 设计一个8阶FIR滤波器(低通滤波器),要求截止频率为20KHz,使用线性相位结构。 参数设计方法: 使用matlab软件设计滤

    2024年02月08日
    浏览(49)
  • [足式机器人]Part2 Dr. CAN学习笔记- Kalman Filter卡尔曼滤波器Ch05

    本文仅供学习使用 本文参考: B站:DR_CAN

    2024年01月19日
    浏览(53)
  • [足式机器人]Part2 Dr. CAN学习笔记- Kalman Filter卡尔曼滤波器Ch05-5+6

    本文仅供学习使用 本文参考: B站:DR_CAN

    2024年01月20日
    浏览(48)
  • [足式机器人]Part2 Dr. CAN学习笔记- Kalman Filter卡尔曼滤波器Ch05-3+4

    本文仅供学习使用 本文参考: B站:DR_CAN

    2024年01月20日
    浏览(49)
  • Matlab滤波器设计示例

    目录 1. 概要 2. 低通滤波器设计例 with designfilt() 2.1 要点一:归一化频率 2.2 要点二:如何使用所生成的滤波器 3. designfilt() 的功能 3.1 能设计什么类型的滤波器  3.2 设计(优化)方法 4. 特殊类型滤波器设计工具 4.1 巴特沃斯滤波器设计 4.2 半带滤波器设计 5. 图形化设计工具filte

    2023年04月26日
    浏览(32)
  • FIR数字滤波器设计

    目标 用Kaiser窗设计一个FIR数字带阻滤波器,对模拟信号 x a ( t ) = c o s ( 2 π f a t ) + c o s ( 2 π f b t ) + c o s ( 2 π f c t ) x_a(t) = cos (2pi f_at) + cos (2pi f_bt) + cos (2pi f_ct) x a ​ ( t ) = cos ( 2 π f a ​ t ) + cos ( 2 π f b ​ t ) + cos ( 2 π f c ​ t ) , f a = 6500 H z , f b = 7000 H z , f c = 9000 H z

    2024年01月24日
    浏览(35)
  • 滤波器设计:FIR和IIR高、低、带通滤波器的实现及Matlab代码

    滤波器设计:FIR和IIR高、低、带通滤波器的实现及Matlab代码 引言: 滤波器作为信号处理中非常重要的一部分,广泛应用于数字信号处理、音频处理、图像处理等领域。本文主要讨论FIR(有限长冲激响应)和IIR(无限长冲激响应)两种常见滤波器的设计及其实现。 FIR滤波器

    2024年02月09日
    浏览(39)
  • 有源低通滤波器设计

    本文主要记录本人最近项目使用的低通滤波器,对滤波器性能要求是,通频带内增益约11dB,对22HZ以上的频率尽可能滤除,特别是50HZ的工频信号,要求衰减到-50dB或更小,由于 巴特沃斯滤波器 的特点是通频带的频率响应曲线最平滑,所以选择了 巴特沃斯滤波器 。 下图为 5阶

    2024年02月12日
    浏览(36)
  • 二阶高通有源滤波器设计与仿真测试

       二阶高通有源滤波器的电路如图1所示,阻容网络C 1 、R 1 和C 2 、R 2 组成二阶高通滤波器,R f 和R 3 确定电路放大倍数。 图1 压控电压源法二阶高通有源滤波器原理图    二阶高通有源滤波器的设计步骤与低通的设计步骤相同,即根据设计技术要求选择适当的f0、ξ及K

    2024年02月12日
    浏览(36)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包