引言
CUDA流是CUDA编程中一个非常重要的概念。流(Stream)是异步执行CUDA命令序列的一种机制,它允许利用设备并行性,从而提高应用程序的性能。
在本文中,将介绍CUDA流的基本概念、如何创建和使用流,以及如何利用流来并行执行多个CUDA命令序列,以便在GPU上提高应用程序的性能。
1. CUDA流概述
流是CUDA并行计算中的一种重要机制。在CUDA编程中,CPU和GPU之间的数据传输是一个非常耗时的操作。但是,在CPU执行数据传输的同时,GPU可以执行计算操作。CUDA流允许在GPU上并行执行多个CUDA命令序列,以充分利用设备并行性,提高应用程序的性能。
在CUDA中,每个流都表示一组按顺序执行的CUDA命令。在一个CUDA流中,所有的CUDA命令都是按顺序执行的。因此,在一个CUDA流中,前面的CUDA命令的执行必须在后面的CUDA命令执行之前完成。
2. 创建和使用CUDA流
在CUDA编程中,可以通过调用cudaStreamCreate()函数来创建一个新的CUDA流。cudaStreamCreate()函数的原型如下所示:
cudaError_t cudaStreamCreate(cudaStream_t* pStream);
cudaStreamCreate()函数将创建一个新的CUDA流,并将指向新创建的流的句柄存储在pStream中。如果创建流成功,则返回cudaSuccess。否则,将返回相应的错误代码。
以下是一个使用CUDA流的示例:
cudaStream_t stream;
cudaStreamCreate(&stream);
在上面的示例中,使用cudaStreamCreate()函数创建了一个新的CUDA流,并将指向该流的句柄存储在stream中。
要将CUDA命令添加到流中,请使用与标准CUDA命令类似的函数,但指定要使用的流。例如,要在创建的流中启动一个CUDA内核,请使用cudaLaunchKernel()函数,并指定要使用的流,如下所示:
myKernel<<<gridSize, blockSize, 0, stream>>>(/* arguments */);
在上面的示例中,myKernel是一个CUDA内核函数。gridSize和blockSize是启动内核时使用的网格和块尺寸。最后一个参数stream指定要使用的流。
在执行CUDA命令时,可以使用cudaStreamSynchronize()函数来等待流中的所有CUDA命令完成。
3. 使用CUDA流实现并行执行
当有多个需要并行执行的CUDA操作时,可以使用CUDA流来实现这种并行性。每个流都可以独立于其他流异步执行其操作,并且在流内部操作会按顺序执行,但流之间的操作不一定按顺序执行。在实践中,可以将一些相互依赖的操作分配到不同的流中,这样就可以在执行操作时实现更高的并行性和吞吐量。
在CUDA中,可以使用以下函数创建、销毁和管理CUDA流:
cudaError_t cudaStreamCreate(cudaStream_t *stream);
cudaError_t cudaStreamDestroy(cudaStream_t stream);
cudaError_t cudaStreamSynchronize(cudaStream_t stream);
cudaError_t cudaStreamQuery(cudaStream_t stream);
函数 | 功能 |
---|---|
cudaStreamCreate() | 创建一个新的CUDA流,并将其句柄存储在由 stream 指定的指针中 |
cudaStreamDestroy() | 销毁一个CUDA流,并释放与其相关联的所有资源 |
cudaStreamSynchronize() | 阻塞CPU线程,直到流中的所有先前提交的操作都已完成 |
cudaStreamQuery() | 查询流中的操作是否已完成,而无需阻塞CPU线程 |
为了将操作提交到CUDA流中,可以使用以下函数:
cudaError_t cudaMemcpyAsync(void* dst, const void* src, size_t count, cudaMemcpyKind kind, cudaStream_t stream);
cudaError_t cudaMemsetAsync(void* devPtr, int value, size_t count, cudaStream_t stream);
cudaError_t cudaLaunchKernel(const void* func, dim3 gridDim, dim3 blockDim, void** args, size_t sharedMem, cudaStream_t stream);
函数 | 功能 |
---|---|
cudaMemcpyAsync() | 在指定的流中异步复制内存 |
cudaMemsetAsync() | 在指定的流中异步将设备内存设置为指定值。 |
cudaLaunchKernel() | 在指定的流中异步启动CUDA核函数 |
。下面的代码示例展示了如何使用CUDA流来执行多个操作:
#include <stdio.h>
__global__ void kernel(int* a, int N)
{
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < N) {
a[idx] *= a[idx];
a[idx] += 1;
}
}
int main()
{
int N = 1000000;
int* h_a = new int[N];
for (int i = 0; i < N; i++) {
h_a[i] = i;
}
int* d_a;
cudaMalloc(&d_a, N * sizeof(int));
cudaMemcpy(d_a, h_a, N * sizeof(int), cudaMemcpyHostToDevice);
int threadsPerBlock = 256;
int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock;
cudaStream_t stream1, stream2;
cudaStreamCreate(&stream1);
cudaStreamCreate(&stream2);
kernel<<<blocksPerGrid, threadsPerBlock, 0, stream1>>>(d_a, N);
cudaMemcpyAsync(h_a, d_a, N * sizeof(int), cudaMemcpyDeviceToHost, stream1);
kernel<<<blocksPerGrid, threadsPerBlock, 0, stream2>>>(d_a, N);
cudaMemcpyAsync(h_a, d_a, N * sizeof(int), cudaMemcpyDeviceToHost, stream2);
cudaStreamSynchronize(stream1);
cudaStreamSynchronize(stream2);
cudaStreamDestroy(stream1);
cudaStreamDestroy(stream2);
for (int i = 0; i < 10; i++) {
printf("%d ", h_a[i]);
}
printf("\n");
delete[] h_a;
cudaFree(d_a);
return 0;
}
在这个示例中,创建了两个流stream1和stream2,并将每个流与一个CUDA内核和一个异步内存拷贝操作相关联。首先在stream1中启动内核并启动异步内存拷贝操作,然后在stream2中启动另一个内核并启动另一个异步内存拷贝操作。最后,使用cudaStreamSynchronize函数同步两个流,并销毁它们。文章来源:https://www.toymoban.com/news/detail-601020.html
4. 总结
本文介绍了如何使用CUDA流来提高并行执行的效率。首先了解了什么是CUDA流及其优点,然后讨论了如何创建和管理CUDA流。接着,看到了如何在CUDA流上执行CUDA核函数和标准C/C++函数。文章来源地址https://www.toymoban.com/news/detail-601020.html
到了这里,关于CUDA流:利用并行执行提高性能的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!