Langchain 使用 OpenAI 聊天模型

这篇具有很好参考价值的文章主要介绍了Langchain 使用 OpenAI 聊天模型。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

本笔记本介绍了如何开始使用 OpenAI 聊天模型。

示例代码,

from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
    ChatPromptTemplate,
    SystemMessagePromptTemplate,
    AIMessagePromptTemplate,
    HumanMessagePromptTemplate,
)
from langchain.schema import AIMessage, HumanMessage, SystemMessage
chat = ChatOpenAI(temperature=0)

上面的示例代码假设您的 OpenAI API 密钥已在环境变量中设置。如果您想手动指定 API 密钥和/或组织 ID,请使用以下代码:

chat = ChatOpenAI(temperature=0, openai_api_key="YOUR_API_KEY", openai_organization="YOUR_ORGANIZATION_ID")

如果 openai_organization 参数不适用于您,请将其删除。

messages = [
    SystemMessage(
        content="You are a helpful assistant that translates English to French."
    ),
    HumanMessage(
        content="Translate this sentence from English to French. I love programming."
    ),
]
chat(messages)

您可以通过使用 MessagePromptTemplate 来使用模板。

您可以从一个或多个 MessagePromptTemplates 构建 ChatPromptTemplate

您可以使用 ChatPromptTemplateformat_prompt —— 这会返回 PromptValue ,您可以将其转换为字符串或 Message 对象,具体取决于您是否想要使用格式化值作为 llm 或聊天模型的输入。

为了方便起见,模板上公开了一个 from_template 方法。如果您要使用此模板,它将如下所示:

template = (
    "You are a helpful assistant that translates {input_language} to {output_language}."
)
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
human_template = "{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
chat_prompt = ChatPromptTemplate.from_messages(
    [system_message_prompt, human_message_prompt]
)

# get a chat completion from the formatted messages
chat(
    chat_prompt.format_prompt(
        input_language="English", output_language="French", text="I love programming."
    ).to_messages()
)
chat_prompt = ChatPromptTemplate.from_messages(
    [system_message_prompt, human_message_prompt]
)

# get a chat completion from the formatted messages
chat(
    chat_prompt.format_prompt(
        input_language="English", output_language="French", text="I love programming."
    ).to_messages()
)

完结!文章来源地址https://www.toymoban.com/news/detail-601177.html

到了这里,关于Langchain 使用 OpenAI 聊天模型的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 自然语言处理从入门到应用——LangChain:模型(Models)-[聊天模型(Chat Models):使用少量示例和响应流式传输]

    分类目录:《大模型从入门到应用》总目录 LangChain系列文章: 基础知识 快速入门 安装与环境配置 链(Chains)、代理(Agent:)和记忆(Memory) 快速开发聊天模型 模型(Models) 基础知识 大型语言模型(LLMs) 基础知识 LLM的异步API、自定义LLM包装器、虚假LLM和人类输入LLM(

    2024年02月15日
    浏览(57)
  • 自然语言处理从入门到应用——LangChain:快速入门-[快速开发聊天模型]

    分类目录:《大模型从入门到应用》总目录 LangChain系列文章: 基础知识 快速入门 安装与环境配置 链(Chains)、代理(Agent:)和记忆(Memory) 快速开发聊天模型 模型(Models) 基础知识 大型语言模型(LLMs) 基础知识 LLM的异步API、自定义LLM包装器、虚假LLM和人类输入LLM(

    2024年02月15日
    浏览(45)
  • Elasticsearch:使用 Langchain 和 OpenAI 进行问答

    这款交互式 jupyter notebook 使用 Langchain 将虚构的工作场所文档拆分为段落 (chunks),并使用 OpenAI 将这些段落转换为嵌入并将其存储到 Elasticsearch 中。然后,当我们提出问题时,我们从向量存储中检索相关段落,并使用 langchain 和 OpenAI 提供问题的摘要。 如果你还没有安装好自己

    2024年02月07日
    浏览(38)
  • 自然语言处理从入门到应用——LangChain:模型(Models)-[聊天模型(Chat Models):基础知识]

    分类目录:《大模型从入门到应用》总目录 LangChain系列文章: 基础知识 快速入门 安装与环境配置 链(Chains)、代理(Agent:)和记忆(Memory) 快速开发聊天模型 模型(Models) 基础知识 大型语言模型(LLMs) 基础知识 LLM的异步API、自定义LLM包装器、虚假LLM和人类输入LLM(

    2024年02月15日
    浏览(50)
  • 使用 Elasticsearch、OpenAI 和 LangChain 进行语义搜索

    在本教程中,我将引导您使用 Elasticsearch、OpenAI、LangChain 和 FastAPI 构建语义搜索服务。 LangChain 是这个领域的新酷孩子。 它是一个旨在帮助你与大型语言模型 (LLM) 交互的库。 LangChain 简化了与 LLMs 相关的许多日常任务,例如从文档中提取文本或在向量数据库中对它们建立索引

    2024年02月08日
    浏览(44)
  • (一)AI本地知识库问答(可运行):LangChain+Chroma向量数据库+OpenAi大模型

    只需要看config目录下的config.py,data目录下的txt知识库文件,db向量数据库文件在持久化部署后会自动生成,route下的app.py,scripts目录下的Chroma向量库持久化部署.py这几个就可以,scripts目录下的考勤问答.py和test目录下都是单独的自己测试的小代码,可以不用关注 因为运行需要

    2024年02月03日
    浏览(54)
  • 使用LangChain构建问答聊天机器人案例实战(三)

    使用LangChain构建问答聊天机器人案例实战 LangChain开发全流程剖析 接下来,我们再回到“get_prompt()”方法。在这个方法中,有系统提示词(system prompts)和用户提示词(user prompts),这是从相应的文件中读取的,从“system.prompt”文件中读取系统提示词(system_template),从“u

    2024年02月14日
    浏览(53)
  • 使用LangChain构建问答聊天机器人案例实战(一)

    使用LangChain构建问答聊天机器人案例实战 现场演示GPT-4代码生成 本节我们会通过一个综合案例,跟大家讲解LangChain,这个案例产生的代码会直接在浏览器中运行,并且会输出结果,如图14-1所示,用户问:“What was the highest close price of IBM?”(“IBM的最高收盘价是多少?”)

    2024年02月15日
    浏览(72)
  • 使用langchain与你自己的数据对话(五):聊天机器人

    之前我已经完成了使用langchain与你自己的数据对话的前四篇博客,还没有阅读这四篇博客的朋友可以先阅读一下: 使用langchain与你自己的数据对话(一):文档加载与切割 使用langchain与你自己的数据对话(二):向量存储与嵌入 使用langchain与你自己的数据对话(三):检索(Retrieva

    2024年02月13日
    浏览(43)
  • 【Java-LangChain:使用 ChatGPT API 搭建系统-6】处理输入-链式 Prompt Chaining Prompts

    在本章中,我们将学习如何通过将复杂任务拆分为一系列简单的子任务来链接多个 Prompt。 您可能会想,为什么要将任务拆分为多个 Prompt,而不是像我们在上一个视频中学习的那样,使用思维链推理一次性完成呢?我们已经证明了语言模型非常擅长遵循复杂的指令,特别是像

    2024年02月07日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包