【《机器学习和深度学习:原理、算法、实战(使用Python和TensorFlow)》——以机器学习理论为基础并包含其在工业界的实践的一本书】

这篇具有很好参考价值的文章主要介绍了【《机器学习和深度学习:原理、算法、实战(使用Python和TensorFlow)》——以机器学习理论为基础并包含其在工业界的实践的一本书】。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

机器学习和深度学习已经成为从业人员在人工智能时代必备的技术,被广泛应用于图像识别、自然语言理解、推荐系统、语音识别等多个领域,并取得了丰硕的成果。目前,很多高校的人工智能、软件工程、计算机应用等专业均已开设了机器学习和深度学习的课程,此外,为便于让学生掌握一些大数据的分析和可视化技术,有一些非计算机专业也开设了与机器学习相关的课程。同时,企业中的一些软件开发人员也想学习相关行业中机器学习和深度学习技术应用的真实案例,而不用过多关注机器学习和深度学习中的一些数学知识。但是,在市面上能够同时满足上述需求的参考书并不多,而《机器学习和深度学习:原理、算法、实战(使用Python和TensorFlow)》恰好是一本能满足高校学生及相关从业人员需求的机器学习和深度学习的参考书。

本书的作者是两位资深的行业专家并且拥有多年的企业培训经验,他们以案例式的编写方式由浅入深地讲解了机器学习和深度学习技术,让读者能够快速掌握机器学习和深度学习的原理及相关应用。在本书的翻译过程中,我们翻阅了大量资料,力求为读者献上-部贴近实际应用且通俗易懂的机器学习与深度学习方面的参考书。

【《机器学习和深度学习:原理、算法、实战(使用Python和TensorFlow)》——以机器学习理论为基础并包含其在工业界的实践的一本书】,机器学习,深度学习,神经网络,python

目前,市面上有关机器学习的图书主要包括两类,分别是面向学术研究的介绍机器学习理论方面的图书和代码手册类的图书。面向学术研究的机器学习理论的图书介绍了在机器学习算法中涉及的数学推导与公式,但对数据的实际应用涉及得很少。对于没有良好的统计或数学方面理论基础的读者来说,很难理解该类图书的内容。这些涉及机器学习原理的图书介绍了数据科学从业人员所面临的现实挑战,却极少谈到机器学习方面的实践。代码手册类图书主要包含代码和相关文档,缺少编码的原因和执行具体任务的逻辑方面的内容。机器学习的学术研究和它如何在工业界使用之间是有一段距离的。因此,我们需要一本书能以机器学习理论为基础并包含与其相关的在工业界的实践,而且在这些实际案例中有符合逻辑的讲解。本书的宗旨是弥补上述两类图书的空白(学术研究与工业界应用之间的空白)。
节选自《机器学习和深度学习:原理、算法、实战(使用Python和TensorFlow)》前言

【《机器学习和深度学习:原理、算法、实战(使用Python和TensorFlow)》——以机器学习理论为基础并包含其在工业界的实践的一本书】,机器学习,深度学习,神经网络,python 

 【《机器学习和深度学习:原理、算法、实战(使用Python和TensorFlow)》——以机器学习理论为基础并包含其在工业界的实践的一本书】,机器学习,深度学习,神经网络,python

 【《机器学习和深度学习:原理、算法、实战(使用Python和TensorFlow)》——以机器学习理论为基础并包含其在工业界的实践的一本书】,机器学习,深度学习,神经网络,python

机器学习和深度学习:原理、算法、实战(使用Python和TensorFlow)【图片 价格 品牌 评论】-京东京东JD.COM是国内专业的网上购物商城,为您提供机器学习和深度学习:原理、算法、实战(使用Python和TensorFlow)价格、图片、品牌、评论、等相关信息.https://item.m.jd.com/product/13935986.html

 文章来源地址https://www.toymoban.com/news/detail-601198.html

到了这里,关于【《机器学习和深度学习:原理、算法、实战(使用Python和TensorFlow)》——以机器学习理论为基础并包含其在工业界的实践的一本书】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 鸟类识别系统python+TensorFlow+Django网页界面+卷积网络算法+深度学习模型

    鸟类识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Django框架,开发网页端操作平台,实现用户上传一张图片识别其名称。 视频+代码:https://www.yuque.com/ziwu/

    2024年02月16日
    浏览(38)
  • 机器学习:LightGBM算法原理(附案例实战)

    作者:i阿极 作者简介:Python领域新星作者、多项比赛获奖者:博主个人首页 😊😊😊如果觉得文章不错或能帮助到你学习,可以点赞👍收藏📁评论📒+关注哦!👍👍👍 📜📜📜如果有小伙伴需要数据集和学习交流,文章下方有交流学习区!一起学习进步!💪 订阅专栏案

    2024年01月19日
    浏览(43)
  • 机器学习:逻辑回归模型算法原理(附案例实战)

    作者:i阿极 作者简介:Python领域新星作者、多项比赛获奖者:博主个人首页 😊😊😊如果觉得文章不错或能帮助到你学习,可以点赞👍收藏📁评论📒+关注哦!👍👍👍 📜📜📜如果有小伙伴需要数据集和学习交流,文章下方有交流学习区!一起学习进步!💪 订阅专栏案

    2024年01月20日
    浏览(46)
  • Python深度学习实战-基于tensorflow原生代码搭建BP神经网络实现分类任务(附源码和实现效果)

            前面两篇文章分别介绍了两种搭建神经网络模型的方法,一种是基于tensorflow的keras框架,另一种是继承父类自定义class类,本篇文章将编写原生代码搭建BP神经网络。 本人读研期间发表5篇SCI数据挖掘相关论文,现在某研究院从事数据挖掘相关科研工作,对数据挖掘

    2024年02月08日
    浏览(48)
  • 计算机视觉——飞桨深度学习实战-图像分类算法原理与实战

    图像分类是深度学习在视觉领域第一个取得突破性成果的任务。本章首先介绍了图像分类任务的发展历程与评价指标。然后分为三个角度分别介绍了在图像分类领域具有重要地位的三种模型。第一种是基于残差网络的模型,本章重点介绍了ResNet、DenseNet和DPN。第二种是基于T

    2024年02月02日
    浏览(53)
  • 事实胜于雄辩,苹果MacOs能不能玩儿机器/深度(ml/dl)学习(Python3.10/Tensorflow2)

    坊间有传MacOs系统不适合机器(ml)学习和深度(dl)学习,这是板上钉钉的刻板印象,就好像有人说女生不适合编程一样的离谱。现而今,无论是Pytorch框架的MPS模式,还是最新的Tensorflow2框架,都已经可以在M1/M2芯片的Mac系统中毫无桎梏地使用GPU显卡设备,本次我们来分享如何在苹

    2023年04月11日
    浏览(35)
  • 基于Python+WaveNet+MFCC+Tensorflow智能方言分类—深度学习算法应用(含全部工程源码)(一)

    博主前段时间发布了一篇有关方言识别和分类模型训练的博客,在读者的反馈中发现许多小伙伴对方言的辨识和分类表现出浓厚兴趣。鉴于此,博主决定专门撰写一篇关于方言分类的博客,以满足读者对这一主题的进一步了解和探索的需求。上篇博客可参考: 《基于Python+W

    2024年02月05日
    浏览(38)
  • 基于Python+WaveNet+MFCC+Tensorflow智能方言分类—深度学习算法应用(含全部工程源码)(二)

    博主前段时间发布了一篇有关方言识别和分类模型训练的博客,在读者的反馈中发现许多小伙伴对方言的辨识和分类表现出浓厚兴趣。鉴于此,博主决定专门撰写一篇关于方言分类的博客,以满足读者对这一主题的进一步了解和探索的需求。上篇博客可参考: 《基于Python+W

    2024年02月05日
    浏览(37)
  • 大数据机器学习深度解读决策树算法:技术全解与案例实战

    本文深入探讨了机器学习中的决策树算法,从基础概念到高级研究进展,再到实战案例应用,全面解析了决策树的理论及其在现实世界问题中的实际效能。通过技术细节和案例实践,揭示了决策树在提供可解释预测中的独特价值。 决策树算法是机器学习领域的基石之一,其强

    2024年02月04日
    浏览(48)
  • 基于Python+WaveNet+CTC+Tensorflow智能语音识别与方言分类—深度学习算法应用(含全部工程源码)

    本项目利用语音文件和方言标注文件,提取语音的梅尔倒谱系数特征,并对这些特征进行归一化处理。在基于标注文件的指导下,构建了一个字典来管理数据。接着,我们选择WaveNet机器学习模型进行训练,并对模型的输出进行softmax处理。最终,经过训练后的模型将被保存以

    2024年02月16日
    浏览(51)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包