刷题日记09《图论基础》

这篇具有很好参考价值的文章主要介绍了刷题日记09《图论基础》。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

图的存储结构

对于图结构而言,常见的存储结构主要有两种:邻接表和邻接矩阵:

刷题日记09《图论基础》,刷题日记-图论,图论,算法

刷题日记09《图论基础》,刷题日记-图论,图论,算法 

邻接表很直观,我把每个节点 x 的邻居都存到一个列表里,然后把 x 和这个列表关联起来,这样就可以通过一个节点 x 找到它的所有相邻节点。

邻接矩阵则是一个二维布尔数组,我们权且称为 matrix,如果节点 x 和 y 是相连的,那么就把 matrix[x][y] 设为 true(上图中绿色的方格代表 true)。如果想找节点 x 的邻居,去扫一圈 matrix[x][..] 就行了。

那么,为什么有这两种存储图的方式呢?肯定是因为他们各有优劣。

对于邻接表,好处是占用的空间少。

你看邻接矩阵里面空着那么多位置,肯定需要更多的存储空间。

但是,邻接表无法快速判断两个节点是否相邻。

比如说我想判断节点 1 是否和节点 3 相邻,我要去邻接表里 1 对应的邻居列表里查找 3 是否存在。但对于邻接矩阵就简单了,只要看看 matrix[1][3] 就知道了,效率高。

所以说,使用哪一种方式实现图,要看具体情况。

图的遍历模板

在图论题目中,最常见的遍历方法是DFS,即深度优先遍历,图与二叉树不同,二叉树的遍历不会产生重复,但是图的遍历会产生重复,因此我们需要使用额外的存储空间来判断是否重复遍历该点,具体的深度优先遍历的遍历模板如下:

// 记录被遍历过的节点
boolean[] visited;
// 记录从起点到当前节点的路径
boolean[] onPath;

/* 图遍历框架 */
void traverse(Graph graph, int s) {
    if (visited[s]) return;
    // 经过节点 s,标记为已遍历
    visited[s] = true;
    // 做选择:标记节点 s 在路径上
    onPath[s] = true;
    for (int neighbor : graph.neighbors(s)) {
        traverse(graph, neighbor);
    }
    // 撤销选择:节点 s 离开路径
    onPath[s] = false;
}

题目

题目描述

给定一个有 n 个节点的有向无环图,用二维数组 graph 表示,请找到所有从 0 到 n-1 的路径并输出(不要求按顺序)。

graph 的第 i 个数组中的单元都表示有向图中 i 号节点所能到达的下一些结点(译者注:有向图是有方向的,即规定了 a→b 你就不能从 b→a ),若为空,就是没有下一个节点了。

示例 1:

输入:graph = [[1,2],[3],[3],[]]
输出:[[0,1,3],[0,2,3]]
解释:有两条路径 0 -> 1 -> 3 和 0 -> 2 -> 3
示例 2:

输入:graph = [[4,3,1],[3,2,4],[3],[4],[]]
输出:[[0,4],[0,3,4],[0,1,3,4],[0,1,2,3,4],[0,1,4]]
示例 3:

输入:graph = [[1],[]]
输出:[[0,1]]
示例 4:

输入:graph = [[1,2,3],[2],[3],[]]
输出:[[0,1,2,3],[0,2,3],[0,3]]
示例 5:

输入:graph = [[1,3],[2],[3],[]]
输出:[[0,1,2,3],[0,3]]

 

提示:

n == graph.length
2 <= n <= 15
0 <= graph[i][j] < n
graph[i][j] != i 

保证输入为有向无环图 (GAD)

解题思路

由题意可得:graph[i]代表与i直接连接的元素,换句话说,graph实际上是在维护一张邻接表,题目中明确说明不存在环(结点不会相互指向),所以我们不需要设置visit[][]来判断是否访问过该结点,只需要按照dfs末班进行循环遍历,直到我们到达最后一个结点文章来源地址https://www.toymoban.com/news/detail-601470.html

实例代码

class Solution {
    int size;
        LinkedList<List<Integer>>res=new LinkedList<>();
        LinkedList<Integer>path=new LinkedList<>();
    public List<List<Integer>> allPathsSourceTarget(int[][] graph) {
        size=graph.length;
        path=new LinkedList<>();
        dfs(graph,0);
        return res;

    }
    public void dfs(int[][]graph,int index){
        //添加
        path.add(index);
        //定义递归出口
        if(index==size-1){
            //添加最后一个元素
            res.add(new LinkedList(path));
        }
         //循环
            for(int i=0;i<graph[index].length;++i){
                dfs(graph,graph[index][i]);
            }
            //删除
            path.removeLast();
    }
}

到了这里,关于刷题日记09《图论基础》的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 算法基础课-搜索与图论

    题目链接:842. 排列数字 - AcWing题库 思路:写的很好的题解AcWing 842. 排列数字--深度优先遍历代码+注释 - AcWing 也可以考虑使用c++自带的next_permutation函数直接秒了: 题目链接:844. 走迷宫 - AcWing题库 思路:由于bfs是一层一层扩展,所以能保证走到终点时,走过的距离最短,所

    2024年04月15日
    浏览(53)
  • acwing算法基础之搜索与图论--kruskal算法

    kruskal算法的关键步骤为: 将所有边按照权重从小到大排序。 定义集合S,表示生成树。 枚举每条边(a,b,c),起点a,终点b,边长c。如果结点a和结点b不连通(用并查集来维护),则将这条边加入到集合S中。 kruskal算法的时间复杂度为O(mlogm),它用来解决稀疏图的最小生成树问题

    2024年02月05日
    浏览(44)
  • 图论算法基础:单源最短路径Dijkstra算法分析

    在 有向带权图 中给定一个起始顶点(源点),Dijkstra算法可以求出 所有其他顶点 到源点的最短路径,Dijkstra算法 不能用于同时含有正负权值的边的图 Source 顶点集合:已经确定 到源点的最短路径 的顶点就会加入 Source 集合中, Source 集合初始时只有源点 dist 数组:用于记录每个顶点到

    2024年02月11日
    浏览(44)
  • 《剑指offer》——刷题日记

    本期,给大家带来的是《剑指offer》几道题目的讲解。希望对大家有所帮助!!! 本文目录 (一)JZ36 二叉搜索树与双向链表 1、题意分析 2、思路讲解 3、代码演示 4、最终结果 (二)BM6 判断链表中是否有环 1、题意分析 2、思路讲解 3、代码演示 4、最终结果 (三)JZ23 链

    2023年04月21日
    浏览(42)
  • 【算法基础:搜索与图论】3.3 拓扑排序

    https://oi-wiki.org/graph/topo/ 本文主要学习拓扑排序相关知识。 拓扑排序的英文名是 Topological sorting。 拓扑排序要解决的问题是给一个 有向无环图 的 所有节点排序 。 我们可以拿大学每学期排课的例子来描述这个过程,比如学习大学课程中有:程序设计,算法语言,高等数学,

    2024年02月16日
    浏览(50)
  • 《LeetCode》——LeetCode刷题日记

    本期,将给大家带来的是关于  LeetCode 的关于二叉树的题目讲解。 目录 (一)606. 根据二叉树创建字符串 💥题意分析  💥解题思路 (二)102. 二叉树的层序遍历 💥题意分析 💥解题思路 (三)236. 二叉树的最近公共祖先  💥题意分析 💥解题思路 首先,第一道题是关于

    2023年04月18日
    浏览(42)
  • C++算法之旅、06 基础篇 | 第三章 图论

    常用代码模板3——搜索与图论 - AcWing 尽可能往深处搜,遇到叶子节点(无路可走)回溯, 恢复现场继续走 数据结构:stack 空间:需要记住路径上的点, (O(h)) 。 ⭐ BFS使用空间少; 无最短路 性质 每个DFS一定对应一个 搜索树 ;要考虑用什么 顺序 遍历所有方案;DFS就是递

    2024年02月10日
    浏览(45)
  • Acwing-基础算法课笔记之搜索与图论

    bellman-ford算法适用于负权边的图,求 1 到 n 的最多经过k条边的最短距离。 如图所示: 1 2 3 dist 0 ∞ infty ∞ ∞ infty ∞ ⇓ Downarrow ⇓ 1 2 3 dist 0 1 ∞ infty ∞ ⇓ Downarrow ⇓ 1 2 3 dist 0 1 2 此过程中出现了串联的结果,所以是错误的,此时需要进行备份操作。 备份操作如下: 为了

    2024年01月20日
    浏览(55)
  • acwing算法基础课(第三讲 搜索与图论)

    void dfs(int u){ if(n == u){ for(int i = 0;i n;i++) puts(g[i]); puts(“”); return; } for(int i = 0;i n;i++){ if(!col[i] !dg[u+i] !udg[n - u + i]){ g[u][i] = ‘Q’; col[i] = dg[u+i] = udg[n - u + i] = true; dfs(u+1); col[i] = dg[u+i] = udg[n - u + i] = false; g[u][i] = ‘.’; } } } int main(){ scanf(“%d”,n); for(int i = 0;i n;i++){ for(int j = 0;j

    2024年04月10日
    浏览(54)
  • 【算法基础:搜索与图论】3.5 求最小生成树算法(Prim&Kruskal)

    最小生成树 有关树的定义 生成子图 :生成子图是从原图中选取部分节点以及这些节点之间的边所组成的图。生成子图中的所有节点和边都必须在原图中存在。 生成树 :一个连通 无向图 的 生成子图 ,同时要求是树。也即在图的边集中选择 n - 1 条,将所有顶点连通。 我们

    2024年02月16日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包