Python实战项目——物流行业数据分析(二)

这篇具有很好参考价值的文章主要介绍了Python实战项目——物流行业数据分析(二)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

今天我们对物流行业数据进行简单分析,数据来源:某企业销售的6种商品所对应的送货及用户反馈数据

解决问题:

1、配送服务是否存在问题
2、是否存在尚有潜力的销售区域
3、商品是否存在质量问题

分析过程:

依旧先进行数据处理
一、数据清洗
① 重复值、缺失值、格式调整
② 异常值处理(比如:销售金额存在等于0的,数量和销售金额的标准差都在均值的8倍以上等)
二、数据规整
比如:增加一项辅助列:月份
三、数据分析并可视化
接下来我们按上面一步步开始。

导入库和数据

import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt 
plt.rcParams['font.sans-serif'] = 'SimHei' ## 设置中文显示
data = pd.read_csv('data_wuliu.csv',encoding='gbk')
data.info()

数据清洗

重复值、缺失值、格式调整

data = pd.read_csv('data_wuliu.csv',encoding='gbk')
data.info()

Python实战项目——物流行业数据分析(二),数据分析项目,python,数据分析,开发语言
通过info()可以看出,包括10列数据,名字,数据量,格式等,可以得出:
1.订单号,货品交货情况,数量:存在缺失值,但是确实量不大,可以删除
2.订单行,对分析无关紧要,可以考虑删除
3.销售金额格式不对(万元|元,逗号问题),数据类型需要转换成int|float

#删除重复记录
data.drop_duplicates(keep='first',inplace=True)
#删除缺失值(na,删除待有na的整行数据,axis=0,how='any'默认值)
data.dropna(axis=0,how='any',inplace=True)
#删除订单行(重复运行会报错,因为第一次已经删除了订单行这一列)
data.drop(columns=['订单行'],inplace=True,axis=1)
print(data.info())
#更新索引(drop=True:把原来的索引index列删除,重置index)
data.reset_index(drop=True,inplace=True)

处理后结果如下图所示。
Python实战项目——物流行业数据分析(二),数据分析项目,python,数据分析,开发语言
取出销售金额列,对每一个数据进行清洗
编写自定义过滤函数:删除逗号,转成float,如果是万元则*10000,否则,删除元

def data_deal(number):
    if number.find('万元')!= -1:#找到带有万元的,取出数字,去掉逗号,转成float,*10000
        number_new = float(number[:number.find('万元')].replace(',',''))*10000
        pass
    else: #找到带有元的,删除元,删除逗号,转成float
        number_new = float(number.replace('元','').replace(',',''))
        pass
    return number_new
data['销售金额'] = data['销售金额'].map(data_deal)
data

Python实战项目——物流行业数据分析(二),数据分析项目,python,数据分析,开发语言

异常值处理

Python实战项目——物流行业数据分析(二),数据分析项目,python,数据分析,开发语言
由结果可得
1.销售金额为0的情况,删除
2.产生严重的数据左偏情况(电商领域的2/8法则很正常。)

data = data[data['销售金额']!=0]
data

Python实战项目——物流行业数据分析(二),数据分析项目,python,数据分析,开发语言

数据规整

增加一项辅助列:月份

data['销售时间'] = pd.to_datetime(data['销售时间'])
data['月份'] = data['销售时间'].apply(lambda x:x.month)
data

Python实战项目——物流行业数据分析(二),数据分析项目,python,数据分析,开发语言

数据分析并可视化

我们回到一开始的问题,现在开始解决

问题1、配送服务是否存在问题
我们分别从月份维度,销售区域维度,货品维度,货品和销售区域结合四个角度来开始探讨。

a.月份维度
data['货品交货状况'] = data['货品交货状况'].str.strip()
data1 = data.groupby(['月份','货品交货状况']).size().unstack()
data1['按时交货率'] = data1['按时交货']/(data1['按时交货']+data1['晚交货'])
data1

Python实战项目——物流行业数据分析(二),数据分析项目,python,数据分析,开发语言

从按时交货率来看,第四季度低于第三季度,猜测可能是气候原因造成

b.销售区域维度

data1 = data.groupby(['销售区域','货品交货状况']).size().unstack()
data1['按时交货率'] = data1['按时交货']/(data1['按时交货']+data1['晚交货'])
print(data1.sort_values(by='按时交货率',ascending=False))

Python实战项目——物流行业数据分析(二),数据分析项目,python,数据分析,开发语言
西北地区存在突出的延时交货问题,急需解決

c.货品维度

data1 = data.groupby(['货品','货品交货状况']).size().unstack()
data1['按时交货率'] = data1['按时交货']/(data1['按时交货']+data1['晚交货'])
print(data1.sort_values(by='按时交货率',ascending=False))

Python实战项目——物流行业数据分析(二),数据分析项目,python,数据分析,开发语言
货品4晚交货情况非常严重,其余货品相对交货

d.货品和销售区域结合

data1 = data.groupby(['货品','销售区域','货品交货状况']).size().unstack()
data1['按时交货率'] = data1['按时交货']/(data1['按时交货']+data1['晚交货'])
print(data1.sort_values(by='按时交货率',ascending=False))

Python实战项目——物流行业数据分析(二),数据分析项目,python,数据分析,开发语言
销售区域:最差在西北地区,货品有1和4,主要是货品4送过较晚导致
货品:最差的货品2,主要送往华东和马来西亚,主要是马来西亚的送货较晚导致。

问题2、是否存在尚有潜力的销售区域

a.月份维度

data1 = data.groupby(['月份','货品'])['数量'].sum().unstack()
data1.plot(kind='line')

Python实战项目——物流行业数据分析(二),数据分析项目,python,数据分析,开发语言
货品2在10月和12月份,销量猛增,原因猜测有二:1.公司加大营销力度 2.开发了新的市场(后续有结论)

b.不同区域

data1 = data.groupby(['销售区域','货品'])['数量'].sum().unstack()
data1

Python实战项目——物流行业数据分析(二),数据分析项目,python,数据分析,开发语言
从销售区域看,每种货品销售区域为1~3个,货品1有三个销售区域,货品2有两个销售区域,其余货品均有1个销售区域

c.月份和区域

data1 = data.groupby(['月份','销售区域','货品'])['数量'].sum().unstack()
data1['货品2']
月份 销售区域
7 华东 489.0
7 华北 NaN
7 华南 NaN
7 泰国 NaN
7 西北 NaN
7 马来西亚 2.0
8 华东 1640.0
8 华北 NaN
8 华南 NaN
8 泰国 NaN
8 西北 NaN
8 马来西亚 1503.0
9 华东 3019.0
9 华北 NaN
9 华南 NaN
9 泰国 NaN
9 西北 NaN
9 马来西亚 1.0
10 华东 28420.0
10 华北 NaN
10 泰国 NaN
10 西北 NaN
10 马来西亚 NaN
11 华东 2041.0
11 华北 NaN
111 华南 NaN
11 泰国 NaN
111 西北 NaN
11 马来西亚 1.0
12 华东 18202.0
12 华北 NaN
12 华南 NaN
12 泰国 NaN
12 西北 NaN
12 马来西亚 3.0
Name: 货品2, dtype: float64

货品2在10,12月份销量猛增,原因主要发生在原有销售区域(华东)
同样,分析出在7,8,9,11月份销售数量还有很大提升空间,可以适当加大营销力度

问题3.商品是否存在质量问题
分析这个问题,我们需要依次算出拒货率,返修率,合格率。

data['货品用户反馈'] = data['货品用户反馈'].str.strip()  #取出首位空格
data1 = data.groupby(['货品','销售区域'])['货品用户反馈'].value_counts().unstack()
data1['拒货率'] = data1['拒货'] /data1.sum(axis=1)  #按行进行求和汇总
data1['返修率'] = data1['返修'] /data1.sum(axis=1)
data1['合格率'] = data1['质量合格'] /data1.sum(axis=1)
data1.sort_values(['合格率','返修率','拒货率'],ascending=False)

Python实战项目——物流行业数据分析(二),数据分析项目,python,数据分析,开发语言文章来源地址https://www.toymoban.com/news/detail-601570.html

  • 货品3.6.5合格率均较高,返修率比较低,说明质量还可以
  • 货品1.2.4合格率较低,返修率较高,质量存在一定的问题,需要改善
  • 货品2在马拉西亚的拒货率最高,同时,在货品2在马拉西亚的按时交货率也非常低。猜测:马来西亚人对送货的时效性要求较高, 如果达不到,则往往考虑拒货。
  • -考虑到货品2主要在华东地区销售量大,可以考虑增大在华东的投资,适当较小马来西亚的投入。

到了这里,关于Python实战项目——物流行业数据分析(二)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 面向物流行业的文档管理系统

    物流和货运行业的效率激烈战在公路、火车、货船和空中展开。DocuWare 的快速、安全和灵活的文档管理是真正的竞争优势。在您的公司和客户的核心流程中节省新的成本和时间。 智能链接货运单据和发票 在国际物流领域,监控流程和为客户开具发票所需的文件可能被卡在卡

    2023年04月08日
    浏览(39)
  • 极智嘉x吉利汽车 x京东物流,引领汽车行业智慧物流新变革!

    近日,中国领先的汽车制造商吉利汽车携手中国领先的技术驱动的供应链解决方案及物流服务商京东物流、全球仓储机器人引领者极智嘉(Geek+),在西安吉利汽车制造基地RDC仓库率先落地SkyPick上存下拣解决方案,实现了全物流链精益化、智能化、一体化管理,创造了汽车行业

    2024年02月11日
    浏览(40)
  • 区块链如何应用于物流行业:提高透明度,降低成本

    作者:禅与计算机程序设计艺术 随着移动互联网、云计算、大数据、物联网等新兴技术的出现以及产业的快速发展,信息化建设已经进入了一个全新的阶段,并将面临着巨大的变革性挑战。基于此背景,区块链技术应运而生,作为一种高效率、低成本、安全可靠的信息传输工

    2024年02月12日
    浏览(47)
  • 极智嘉(Geek+)再获重磅荣誉,持续力领跑智慧物流行业发展

    近日,全球仓储机器人引领者极智嘉(Geek+)再度传来好消息,凭借着全球化的专业服务能力和稳健增长的亮眼海外成绩,一举荣登“2023出海品牌服务商”价值榜,成为唯一登榜的物流机器人企业。 作为率先出海的物流机器人企业,极智嘉(Geek+)在全球化发展和服务方面颇有建树

    2024年02月11日
    浏览(34)
  • ChatGPT在物流与运输行业的智能场景:智能调度和自动驾驶的前瞻应用

      第一章:引言 随着人工智能技术的飞速发展,物流与运输行业正迎来一场革命。传统的调度和运输模式已经无法满足快速增长的物流需求和客户期望。在这一领域,ChatGPT作为一种先进的自然语言处理模型,具有巨大的潜力。本文将探讨ChatGPT在物流与运输行业中智能调度和

    2024年02月10日
    浏览(41)
  • 111个Python数据分析实战项目,代码已跑通,数据可下载

    这里整理了111个数据分析的案例,每一个都进行了严格的筛选,筛选标准如下: 1. 有干货:杜绝纯可视化、统计性分析,有一定比例的讲解性文字 2. 可跑通:所有代码均经过测试,(大概率)可以一键跑通(因为库包更新,或者链接有效性问题,或多或少会存在个别失效情

    2024年02月03日
    浏览(43)
  • python大数据分析游戏行业中的 Apache Kafka:用例 + 架构!

    这篇博文探讨了使用 Apache Kafka 的事件流如何提供可扩展、可靠且高效的基础设施,让游戏玩家开心并让游戏公司取得成功。讨论了游戏行业中的各种用例和架构,包括在线和移动游戏、博彩、赌博和视频流。 学习关于: 游戏遥测的实时分析和数据关联 实时广告和应用内购

    2024年03月27日
    浏览(69)
  • 基于Python的汽车行业大数据分析系统的设计与实现

    摘    要 汽车行业是一个竞争激烈的行业,数据分析在该行业中扮演着越来越重要的角色。因此,基于Python的汽车行业大数据分析系统拥有着广阔的应用前景和市场需求。在这个系统中,我们利用Python语言的高效性和易用性,结合数据挖掘和机器学习技术,可以对汽车行业

    2024年02月06日
    浏览(43)
  • 数据分析实战项目2:优衣库销售数据分析

    1、需求和数据加载 数据:不同城市优衣库门店的销售数据, 需求: 不同产品的销售方式,顾客喜欢的购买方式(线上or线下) 销售额与成本之间的关系 购买时间偏好 看数据查看问题:revenue最小值出现负值 2、不同种类产品的销售情况 2.1 不同产品的销售情况 对列A分组,不

    2024年02月08日
    浏览(52)
  • 人工智能在物流数据分析中的应用:基于人工智能的物流智能监控与分析

    作者:禅与计算机程序设计艺术 引言 1.1. 背景介绍 随着全球经济的快速发展和物流行业的不断壮大,对物流管理的效率与质量的要求也越来越高。传统的物流管理手段已经难以满足现代物流行业的需要,人工智能技术在物流管理中的应用显得尤为重要。 1.2. 文章目的 本文旨

    2024年02月08日
    浏览(61)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包