叉乘
几何图示:
设有
a = ( a x , a y , a z ) , b = ( b x , b y , b z ) \mathbf{a}=\left(a_{x}, a_{y}, a_{z}\right), \mathbf{b}=\left(b_{x}, b_{y}, b_{z}\right) a=(ax,ay,az),b=(bx,by,bz)
i
,j
,k
分别是X
,Y
,Z
轴方向的单位向量,则:
a × b = ( a y b z − a z b y ) i + ( a z b x − a x b z ) j + ( a x b y − a y b x ) k \mathbf{a} \times \mathbf{b}=\left(a_{y} b_{z}-a_{z} b_{y}\right) \mathbf{i}+\left(a_{z} b_{x}-a_{x} b_{z}\right) \mathbf{j}+\left(a_{x} b_{y}-a_{y} b_{x}\right) \mathbf{k} a×b=(aybz−azby)i+(azbx−axbz)j+(axby−aybx)k
为了帮助记忆,利用三阶行列式,写成
∣ i j k a x a y a z b x b y b z ∣ \left|\begin{array}{lll} i & j & k \\ a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \end{array}\right| ∣∣∣∣∣∣iaxbxjaybykazbz∣∣∣∣∣∣
设a=(l,m,n),b=(o,p,q)
,则
a × b = ( l , m , n ) × ( o , p , q ) = ( m q − n p , n o − l q , l p − m o ) \mathbf{a} \times \mathbf{b}=(l, m, n) \times(o, p, q)=(m q-n p, n o-l q, l p-m o) a×b=(l,m,n)×(o,p,q)=(mq−np,no−lq,lp−mo)
利用三阶行列式,写成
∣ i j k l m n o p q ∣ \left|\begin{array}{ccc} i & j & k \\ l & m & n \\ o & p & q \end{array}\right| ∣∣∣∣∣∣ilojmpknq∣∣∣∣∣∣
推导
设有三个单位向量i
,j
,k
,则:
i
→
=
(
1
,
0
,
0
)
j
→
=
(
0
,
1
,
0
)
k
→
=
(
0
,
0
,
1
)
\begin{aligned} &\overrightarrow{\mathrm{i}}=(1,0,0) \\ &\overrightarrow{\mathrm{j}}=(0,1,0) \\ &\overrightarrow{\mathrm{k}}=(0,0,1) \end{aligned}
i=(1,0,0)j=(0,1,0)k=(0,0,1)
且
i
→
=
j
→
×
k
→
j
→
=
k
→
×
i
→
k
→
=
i
→
×
j
→
k
→
×
j
→
=
−
i
→
i
→
×
k
→
=
−
j
→
j
→
×
i
→
=
−
k
→
i
→
×
i
→
=
j
→
×
j
→
=
k
→
×
k
→
=
0
→
=
0
\overrightarrow{\mathrm{i}}=\overrightarrow{\mathrm{j}} \times \overrightarrow{\mathrm{k}}\\ \overrightarrow{\mathrm{j}}=\overrightarrow{\mathrm{k}} \times \overrightarrow{\mathrm{i}}\\ \overrightarrow{\mathrm{k}}=\overrightarrow{\mathrm{i}} \times \overrightarrow{\mathrm{j}}\\ \overrightarrow{\mathrm{k}} \times \overrightarrow{\mathrm{j}}=- \overrightarrow{\mathrm{i}}\\ \overrightarrow{\mathrm{i}} \times \overrightarrow{\mathrm{k}}=- \overrightarrow{\mathrm{j}}\\ \overrightarrow{\mathrm{j}} \times \overrightarrow{\mathrm{i}}=- \overrightarrow{\mathrm{k}}\\ \overrightarrow{\mathrm{i}} \times \overrightarrow{\mathrm{i}} = \overrightarrow{\mathrm{j}} \times \overrightarrow{\mathrm{j}} = \overrightarrow{\mathrm{k}} \times \overrightarrow{\mathrm{k}} = \overrightarrow{\mathrm{0}} = 0
i=j×kj=k×ik=i×jk×j=−ii×k=−jj×i=−ki×i=j×j=k×k=0=0
i
,j
,k
是三个相互垂直的向量。它们刚好可以构成一个坐标系。
对于处于i
,j
,k
构成的坐标系中的向量u
,v
我们可以如下表示:
u
→
=
(
x
u
,
y
u
,
z
u
)
v
→
=
(
x
v
,
y
v
,
z
v
)
\begin{aligned} &\overrightarrow{\mathrm{u}}=\left(\mathrm{x}_{\mathrm{u}}, \mathrm{y}_{\mathrm{u}}, \mathrm{z}_{\mathrm{u}}\right) \\ &\overrightarrow{\mathrm{v}}=\left(\mathrm{x}_{\mathrm{v}}, \mathrm{y}_{\mathrm{v}}, \mathrm{z}_{\mathrm{v}}\right) \end{aligned}
u=(xu,yu,zu)v=(xv,yv,zv)
u → = X u ⋅ i → + y u ⋅ j → + z u ⋅ k → v → = X v ⋅ i → + y v ⋅ j → + z v ⋅ k → \begin{aligned} &\overrightarrow{\mathrm{u}}=\mathrm{X}_{\mathrm{u}} \cdot \overrightarrow{\mathrm{i}}+\mathrm{y}_{\mathrm{u}} \cdot \overrightarrow{\mathrm{j}}+\mathrm{z}_{\mathrm{u}} \cdot \overrightarrow{\mathrm{k}} \\ &\overrightarrow{\mathrm{v}}=\mathrm{X}_{\mathrm{v}} \cdot \overrightarrow{\mathrm{i}}+\mathrm{y}_{\mathrm{v}} \cdot \overrightarrow{\mathrm{j}}+\mathrm{z}_{\mathrm{v}} \cdot \overrightarrow{\mathrm{k}} \end{aligned} u=Xu⋅i+yu⋅j+zu⋅kv=Xv⋅i+yv⋅j+zv⋅k
u → × v → = ( x u ⋅ i → + y u ⋅ j → + z u ⋅ k → ) × ( x v ⋅ i → + y v j → + z v ⋅ k → ) \overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{v}}=\left(\mathrm{x}_{\mathrm{u}} \cdot \overrightarrow{\mathrm{i}}+\mathrm{y}_{\mathrm{u}} \cdot \overrightarrow{\mathrm{j}}+\mathrm{z}_{\mathrm{u}} \cdot \overrightarrow{\mathrm{k}}\right) \times\left(\mathrm{x}_{\mathrm{v}} \cdot \overrightarrow{\mathrm{i}}+\mathrm{y}_{\mathrm{v}} \overrightarrow{\mathrm{j}}+\mathrm{z}_{\mathrm{v}} \cdot \overrightarrow{\mathrm{k}}\right) u×v=(xu⋅i+yu⋅j+zu⋅k)×(xv⋅i+yvj+zv⋅k)
展开,得:
u → × v → = x u ⋅ x v ⋅ ( i → ⋅ i → ) + x u ⋅ y v ⋅ ( i → ⋅ j → ) + x u ⋅ z v ⋅ ( i → ⋅ k → ) + y u ⋅ x v ⋅ ( j → ⋅ i → ) + y u ⋅ y v ⋅ ( j → ⋅ j → ) + y u ⋅ z v ⋅ ( j → ⋅ k → ) + z u ⋅ x v ⋅ ( k → ⋅ i → ) + z u ⋅ y v ⋅ ( k → ⋅ j → ) + z u ⋅ z v ⋅ ( k → ⋅ k → ) \begin{aligned} \overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{v}}=& \mathrm{x}_{\mathrm{u}} \cdot \mathrm{x}_{\mathrm{v}} \cdot(\overrightarrow{\mathrm{i}} \cdot \overrightarrow{\mathrm{i}})+\mathrm{x}_{\mathrm{u}} \cdot \mathrm{y}_{\mathrm{v}} \cdot(\overrightarrow{\mathrm{i}} \cdot \overrightarrow{\mathrm{j}})+\mathrm{x}_{\mathrm{u}} \cdot \mathrm{z}_{\mathrm{v}} \cdot(\overrightarrow{\mathrm{i}} \cdot \overrightarrow{\mathrm{k}}) \\ &+\mathrm{y}_{\mathrm{u}} \cdot \mathrm{x}_{\mathrm{v}} \cdot(\overrightarrow{\mathrm{j}} \cdot \overrightarrow{\mathrm{i}})+\mathrm{y}_{\mathrm{u}} \cdot \mathrm{y}_{\mathrm{v}} \cdot(\overrightarrow{\mathrm{j}} \cdot \overrightarrow{\mathrm{j}})+\mathrm{y}_{\mathrm{u}} \cdot \mathrm{z}_{\mathrm{v}} \cdot(\overrightarrow{\mathrm{j}} \cdot \overrightarrow{\mathrm{k}}) \\ &+\mathrm{z}_{\mathrm{u}} \cdot \mathrm{x}_{\mathrm{v}} \cdot(\overrightarrow{\mathrm{k}} \cdot \overrightarrow{\mathrm{i}})+\mathrm{z}_{\mathrm{u}} \cdot \mathrm{y}_{\mathrm{v}} \cdot(\overrightarrow{\mathrm{k}} \cdot \overrightarrow{\mathrm{j}})+\mathrm{z}_{\mathrm{u}} \cdot \mathrm{z}_{\mathrm{v}} \cdot(\overrightarrow{\mathrm{k}} \cdot \overrightarrow{\mathrm{k}}) \end{aligned} u×v=xu⋅xv⋅(i⋅i)+xu⋅yv⋅(i⋅j)+xu⋅zv⋅(i⋅k)+yu⋅xv⋅(j⋅i)+yu⋅yv⋅(j⋅j)+yu⋅zv⋅(j⋅k)+zu⋅xv⋅(k⋅i)+zu⋅yv⋅(k⋅j)+zu⋅zv⋅(k⋅k)
化简,得:
u ⃗ × v ⃗ = 0 → + x u ⋅ y v ⋅ ( k ⃗ ) + x u ⋅ z v ⋅ ( − j ⃗ ) + y u ⋅ x v ⋅ ( − k ⃗ ) + 0 → + y u ⋅ z v ⋅ ( i ⃗ ) + z u ⋅ x V ⋅ ( j ⃗ ) + z u ⋅ y v ⋅ ( − i ⃗ ) + 0 → \begin{gathered} \vec{u} \times \vec{v}=\overrightarrow{0}+x_{u} \cdot y_{v} \cdot(\vec{k})+x_{u} \cdot z_{v} \cdot(-\vec{j}) \\ +y_{u} \cdot x_{v} \cdot(-\vec{k})+\overrightarrow{0}+y_{u} \cdot z_{v} \cdot(\vec{i}) \\ +z_{u} \cdot x_{V} \cdot(\vec{j})+z_{u} \cdot y_{v} \cdot(-\vec{i})+\overrightarrow{0} \end{gathered} u×v=0+xu⋅yv⋅(k)+xu⋅zv⋅(−j)+yu⋅xv⋅(−k)+0+yu⋅zv⋅(i)+zu⋅xV⋅(j)+zu⋅yv⋅(−i)+0
合并,得:
u → × v → = ( y u ⋅ z v − z u ⋅ y v ) ⋅ ( i → ) + ( z u ⋅ x v − x u ⋅ z v ) ⋅ ( j → ) + ( x u ⋅ y v − y u ⋅ x v ) ⋅ ( k → ) \overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{v}}=\left(\mathrm{y}_{\mathrm{u}} \cdot \mathrm{z}_{\mathrm{v}}-\mathrm{z}_{\mathrm{u}} \cdot \mathrm{y}_{\mathrm{v}}\right) \cdot(\overrightarrow{\mathrm{i}})+\left(\mathrm{z}_{\mathrm{u}} \cdot \mathrm{x}_{\mathrm{v}}-\mathrm{x}_{\mathrm{u}} \cdot \mathrm{z}_{\mathrm{v}}\right) \cdot(\overrightarrow{\mathrm{j}})+\left(\mathrm{x}_{\mathrm{u}} \cdot \mathrm{y}_{\mathrm{v}}-\mathrm{y}_{\mathrm{u}} \cdot \mathrm{x}_{\mathrm{v}}\right) \cdot(\overrightarrow{\mathrm{k}}) u×v=(yu⋅zv−zu⋅yv)⋅(i)+(zu⋅xv−xu⋅zv)⋅(j)+(xu⋅yv−yu⋅xv)⋅(k)
叉乘的几何意义
设
c
→
=
a
→
×
b
→
\overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}
c=a×b
则c
的方向垂直于a
与b
所决定的平面,c
的指向按右手定则从a
转向b
来确定。
且c
的长度在数值上等于以a
,b
,夹角为θ
组成的平行四边形的面积。
∣
c
∣
=
∣
a
∣
∣
b
∣
⋅
sin
θ
|c|=|a||b|·\sin \theta
∣c∣=∣a∣∣b∣⋅sinθ
右手定则:
若坐标系是满足右手定则的,当右手的四指从a以不超过180度的转角转向b时,竖起的大拇指指向是c的方向。
代数规则
-
反交换律
a → × b → = − b → × a → \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=-\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{a}} a×b=−b×a -
加法的分配律
a ⃗ × ( b ⃗ + c ⃗ ) = a ⃗ × b ⃗ + a ⃗ × c ⃗ \vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c} a×(b+c)=a×b+a×c
-
与标量乘法兼容
r a → × b → = a → × r b → = r × ( a → × b → ) r\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{a}} \times r\overrightarrow{\mathrm{b}}=r \times(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}) ra×b=a×rb=r×(a×b) -
不满足结合律,但满足雅可比恒等式
a → × ( b → × c → ) + b → × ( c → × a → ) + c → × ( a → × b → ) = 0 \overrightarrow{\mathrm{a}} \times(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})+\overrightarrow{\mathrm{b}} \times(\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}})+\overrightarrow{\mathrm{c}} \times(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}) = 0 a×(b×c)+b×(c×a)+c×(a×b)=0 -
分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的R3构成了一个李代数。
-
两个非零向量a和b平行,当且仅当
a×b=0
。
拉格朗日公式
设向量坐标
a
⃗
=
(
x
1
,
y
1
,
z
1
)
,
b
⃗
=
(
x
2
,
y
2
,
z
2
)
,
c
⃗
=
(
x
3
,
y
3
,
z
3
)
\vec{a}=(x 1, y 1, z 1), \vec{b}=(x 2, y 2, z 2), \vec{c}=(x 3, y 3, z 3)
a=(x1,y1,z1),b=(x2,y2,z2),c=(x3,y3,z3), 则
(
a
⃗
×
b
⃗
)
×
c
⃗
=
(
y
1
z
2
−
z
1
y
2
,
z
1
x
2
−
x
1
z
2
,
x
1
y
2
−
x
2
y
1
)
×
(
x
3
,
y
3
,
z
3
)
=
(
z
1
z
3
x
2
−
x
1
z
2
z
3
−
x
1
y
2
y
3
+
x
2
y
1
y
3
,
x
1
x
3
y
2
−
x
2
x
3
y
1
−
y
1
z
2
z
3
+
z
1
z
3
y
2
,
y
1
y
3
z
2
−
y
2
y
3
z
1
−
x
2
x
3
z
1
+
x
1
x
3
z
2
)
=
(
x
2
(
x
1
x
3
+
y
1
y
3
+
z
1
z
3
)
,
y
2
(
x
1
x
3
+
y
1
y
3
+
z
1
z
3
)
,
z
2
(
x
1
x
3
+
y
1
y
3
+
z
1
z
3
)
)
−
(
x
1
(
x
2
x
3
+
y
2
y
3
+
z
2
z
3
)
,
y
1
(
x
2
x
3
+
y
2
y
3
+
z
2
z
3
)
,
z
1
(
x
2
x
3
+
y
2
y
3
+
z
2
z
3
)
)
=
(
x
2
(
a
⃗
⋅
c
⃗
)
,
y
2
(
a
⃗
⋅
c
⃗
)
,
z
2
(
a
⃗
⋅
c
⃗
)
)
−
(
x
1
(
b
⃗
⋅
c
⃗
)
,
y
1
(
b
⃗
⋅
c
⃗
)
,
z
1
(
b
⃗
⋅
c
⃗
)
)
=
b
⃗
(
a
⃗
⋅
c
⃗
)
−
a
⃗
(
b
⃗
⋅
c
⃗
)
\begin{aligned} &(\vec{a} \times \vec{b}) \times \vec{c}=\left(y_{1} z_{2}-z_{1} y_{2}, z_{1} x_{2}-x_{1} z_{2}, x_{1} y_{2}-x_{2} y_{1}\right) \times\left(x_{3}, y_{3}, z_{3}\right) \\ &=\left(z_{1} z_{3} x_{2}-x_{1} z_{2} z_{3}-x_{1} y_{2} y_{3}+x_{2} y_{1} y_{3}, x_{1} x_{3} y_{2}-x_{2} x_{3} y_{1}\right. \\ &\left.-y_{1} z_{2} z_{3}+z_{1} z_{3} y_{2}, y_{1} y_{3} z_{2}-y_{2} y_{3} z_{1}-x_{2} x_{3} z_{1}+x_{1} x_{3} z_{2}\right) \\ &=\left(x_{2}\left(x_{1} x_{3}+y_{1} y_{3}+z_{1} z_{3}\right), y_{2}\left(x_{1} x_{3}+y_{1} y_{3}+z_{1} z_{3}\right), z_{2}\left(x_{1} x_{3}+y_{1} y_{3}+z_{1} z_{3}\right)\right) \\ &-\left(x_{1}\left(x_{2} x_{3}+y_{2} y_{3}+z_{2} z_{3}\right), y_{1}\left(x_{2} x_{3}+y_{2} y_{3}+z_{2} z_{3}\right), z_{1}\left(x_{2} x_{3}+y_{2} y_{3}+z_{2} z_{3}\right)\right) \\ &=\left(x_{2}(\vec{a} \cdot \vec{c}), y_{2}(\vec{a} \cdot \vec{c}), z_{2}(\vec{a} \cdot \vec{c})\right)-\left(x_{1}(\vec{b} \cdot \vec{c}), y_{1}(\vec{b} \cdot \vec{c}), z_{1}(\vec{b} \cdot \vec{c})\right) \\ &=\vec{b}(\vec{a} \cdot \vec{c})-\vec{a}(\vec{b} \cdot \vec{c}) \end{aligned}
(a×b)×c=(y1z2−z1y2,z1x2−x1z2,x1y2−x2y1)×(x3,y3,z3)=(z1z3x2−x1z2z3−x1y2y3+x2y1y3,x1x3y2−x2x3y1−y1z2z3+z1z3y2,y1y3z2−y2y3z1−x2x3z1+x1x3z2)=(x2(x1x3+y1y3+z1z3),y2(x1x3+y1y3+z1z3),z2(x1x3+y1y3+z1z3))−(x1(x2x3+y2y3+z2z3),y1(x2x3+y2y3+z2z3),z1(x2x3+y2y3+z2z3))=(x2(a⋅c),y2(a⋅c),z2(a⋅c))−(x1(b⋅c),y1(b⋅c),z1(b⋅c))=b(a⋅c)−a(b⋅c)
这就是二重向量叉乘化简公式
(
a
⃗
×
b
⃗
)
×
c
⃗
=
b
⃗
(
a
⃗
⋅
c
⃗
)
−
a
⃗
(
b
⃗
⋅
c
⃗
)
(\vec{a} \times \vec{b}) \times \vec{c}=\vec{b}(\vec{a} \cdot \vec{c})-\vec{a}(\vec{b} \cdot \vec{c})
(a×b)×c=b(a⋅c)−a(b⋅c)
转化一下,得
a
⃗
×
(
b
⃗
×
c
⃗
)
=
b
⃗
(
a
⃗
⋅
c
⃗
)
−
c
⃗
(
a
⃗
⋅
b
⃗
)
\vec{a} \times (\vec{b} \times \vec{c})=\vec{b}(\vec{a} \cdot \vec{c})-\vec{c}(\vec{a} \cdot \vec{b})
a×(b×c)=b(a⋅c)−c(a⋅b)文章来源:https://www.toymoban.com/news/detail-602306.html
向量积(矢积)与数量积(标积)的区别
文章来源地址https://www.toymoban.com/news/detail-602306.html
到了这里,关于叉乘、向量积的计算以及推导的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!