pytorch学习——第二个模型(逻辑回归)

这篇具有很好参考价值的文章主要介绍了pytorch学习——第二个模型(逻辑回归)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

参考该博客系统学习Pytorch笔记二:Pytorch的动态图、自动求导及逻辑回归
c l a s s = { 0 0.5 > y 1 0.5 ≤ y class=\left\{ \begin{array}{rcl} 0 & & {0.5 > y}\\ 1 & & {0.5 \le y}\\ \end{array} \right. class={010.5>y0.5y
根据这个y的取值进行分类的,当取值小于0.5, 就判别为类别0, 大于0.5, 就判别为类别1
线性回归: 自变量是 X X X, 因变量是 y y y, 关系: y = w x + b y = w x + b y=wx+b , 图像是一条直线。是分析自变量 x x x和因变量 y y y(标量)之间关系的方法。 注意这里的线性是针对于 w w w说的, 一个 w w w只影响一个 x x x。决策边界是一条直线
逻辑回归:自变量是 X X X, 因变量是 y y y, 只不过这里的 y y y变成了概率。 关系:
y = f ( w x + b ) y=f(wx+b) y=f(wx+b)
f ( x ) = 1 1 + e − x f(x)=\frac{1}{1+e^{-x}} f(x)=1+ex1
图像也是一条直线。 是分析自变量 x x x与因变量 y y y(概率)之间的关系

数据生成

这里我们使用随机生成的方式,生成2类样本(用0和1表示), 每一类样本100个, 每一个样本两个特征。

"""数据生成"""
torch.manual_seed(1)

sample_nums = 100
mean_value = 1.7
bias = 1

n_data = torch.ones(sample_nums, 2)
x0 = torch.normal(mean_value*n_data, 1) + bias  # 类别0  数据shape=(100,2)
y0 = torch.zeros(sample_nums)   # 类别0, 数据shape=(100, 1)
x1 = torch.normal(-mean_value*n_data, 1) + bias   # 类别1, 数据shape=(100,2)
y1 = torch.ones(sample_nums)    # 类别1  shape=(100, 1)

train_x = torch.cat([x0, x1], 0)
train_y = torch.cat([y0, y1], 0)

建立模型

这里我们使用两种方式建立我们的逻辑回归模型,一种是Pytorch的sequential方式,这种方式就是简单,易懂,就类似于搭积木一样,一层一层往上搭。 另一种方式是继承nn.Module这个类搭建模型,这种方式非常灵活,能够搭建各种复杂的网络。

"""建立模型"""
class LR(torch.nn.Module):
    def __init__(self):
        super(LR, self).__init__()
        self.features = torch.nn.Linear(2, 1)  # #in_features代表输入的数据有多少个特征值,out_features同理
        self.sigmoid = torch.nn.Sigmoid()
    
    def forward(self, x):
        x = self.features(x)
        x = self.sigmoid(x)
        
        return x

lr_net = LR()     # 实例化逻辑回归模型

另外一种方式,Sequential的方法:

lr_net = torch.nn.Sequential(
    torch.nn.Linear(2, 1),
    torch.nn.Sigmoid()
)

选择损失函数

"""选择损失函数"""
loss_fn = torch.nn.BCELoss()

BCELoss的使用有两点需要注意:

1.仅仅用于二分类问题,全称“BinaryClassEntroyLoss”

2.它需要在使用前进行Sigmoid()

选择优化器

"""选择优化器"""
lr = 0.01
optimizer = torch.optim.SGD(lr_net.parameters(), lr=lr, momentum=0.9)

迭代训练模型

"""模型训练"""
for iteration in range(1000):
    
    # 前向传播
    y_pred = lr_net(train_x)
    
    # 计算loss
    loss = loss_fn(y_pred.squeeze(), train_y)
    
    # 反向传播
    loss.backward()
    
    # 更新参数
    optimizer.step()
    
    # 清空梯度
    optimizer.zero_grad()
    
    # 绘图
    if iteration % 20 == 0:

        mask = y_pred.ge(0.5).float().squeeze()  # 以0.5为阈值进行分类
        correct = (mask == train_y).sum()  # 计算正确预测的样本个数
        acc = correct.item() / train_y.size(0)  # 计算分类准确率

        plt.scatter(x0.data.numpy()[:, 0], x0.data.numpy()[:, 1], c='r', label='class 0')
        plt.scatter(x1.data.numpy()[:, 0], x1.data.numpy()[:, 1], c='b', label='class 1')

        w0, w1 = lr_net.features.weight[0]
        w0, w1 = float(w0.item()), float(w1.item())
        plot_b = float(lr_net.features.bias[0].item())
        plot_x = np.arange(-6, 6, 0.1)
        plot_y = (-w0 * plot_x - plot_b) / w1

        plt.xlim(-5, 7)
        plt.ylim(-7, 7)
        plt.plot(plot_x, plot_y)

        plt.text(-5, 5, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color': 'red'})
        plt.title("Iteration: {}\nw0:{:.2f} w1:{:.2f} b: {:.2f} accuracy:{:.2%}".format(iteration, w0, w1, plot_b, acc))
        plt.legend()

        plt.show()
        plt.pause(0.5)

        if acc > 0.99:
            break

一些函数解释

.item()

在 pytorch 训练时,一般用到 .item() 方法。比如 loss.item()。
∙ \bullet 返回这个张量的值作为一个标准的 Python 数字。这只适用于单元素张量。对于其他情况,请参见tolist()。
∙ \bullet 这个运算是不可微的。
在浮点数结果上使用 .item() 函数可以提高显示精度,所以我们在求 loss 或者 accuracy 时,一般使用 x[1,1].item() 而不是单纯使用 x[1,1]。

.ge()

pytorch学习——第二个模型(逻辑回归),pytorch,学习,逻辑回归
上面式子a代表y_pred中>0.5的全部为true
b代表浮点转换
mask代表合成序列

全部代码

import torch
import matplotlib.pyplot as plt
import numpy as np
"""数据生成"""
torch.manual_seed(1)

sample_nums = 100
mean_value = 1.7
bias = 1

n_data = torch.ones(sample_nums, 2)
x0 = torch.normal(mean_value*n_data, 1) + bias  # 类别0  数据shape=(100,2)
y0 = torch.zeros(sample_nums)   # 类别0, 数据shape=(100, 1)
x1 = torch.normal(-mean_value*n_data, 1) + bias   # 类别1, 数据shape=(100,2)
y1 = torch.ones(sample_nums)    # 类别1  shape=(100, 1)

train_x = torch.cat([x0, x1], 0)
train_y = torch.cat([y0, y1], 0)
"""建立模型"""


class LR(torch.nn.Module):
    def __init__(self):
        super(LR, self).__init__()
        self.features = torch.nn.Linear(2, 1)  # Linear 是module的子类,是参数化module的一种,与其名称一样,表示着一种线性变换。输入2个节点,输出1个节点
        self.sigmoid = torch.nn.Sigmoid()

    def forward(self, x):
        x = self.features(x)
        x = self.sigmoid(x)

        return x


lr_net = LR()  # 实例化逻辑回归模型
"""选择损失函数"""
loss_fn = torch.nn.BCELoss()
"""选择优化器"""
lr = 0.01
optimizer = torch.optim.SGD(lr_net.parameters(), lr=lr, momentum=0.9)
#acce=[]
"""模型训练"""
for iteration in range(1000):

    # 前向传播
    y_pred = lr_net(train_x)

    # 计算loss
    loss = loss_fn(y_pred.squeeze(), train_y)

    # 反向传播
    loss.backward()

    # 更新参数
    optimizer.step()

    # 清空梯度
    optimizer.zero_grad()

    # 绘图
    if iteration % 20 == 0:
        mask = y_pred.ge(0.5).float().squeeze()  # 以0.5为阈值进行分类
        correct = (mask == train_y).sum()  # 计算正确预测的样本个数
        acc = correct.item() / train_y.size(0)  # 计算分类准确率

        plt.scatter(x0.data.numpy()[:, 0], x0.data.numpy()[:, 1], c='r', label='class 0')
        plt.scatter(x1.data.numpy()[:, 0], x1.data.numpy()[:, 1], c='b', label='class 1')

        w0, w1 = lr_net.features.weight[0]
        w0, w1 = float(w0.item()), float(w1.item())
        plot_b = float(lr_net.features.bias[0].item())
        plot_x = np.arange(-6, 6, 0.1)
        plot_y = (-w0 * plot_x - plot_b) / w1

        plt.xlim(-5, 7)
        plt.ylim(-7, 7)
        plt.plot(plot_x, plot_y)

        plt.text(-5, 5, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color': 'red'})
        plt.title("Iteration: {}\nw0:{:.2f} w1:{:.2f} b: {:.2f} accuracy:{:.2%}".format(iteration, w0, w1, plot_b, acc))
        plt.legend()

        plt.show()
        plt.pause(0.5)

        if acc > 0.99:
            break
	# x=range(0,100,20)
	# plt.plot(x, acce, c='r')
	# plt.title('acc')
	# plt.ylabel("acc")
	# plt.xlabel("epoch")
	# plt.show()

pytorch学习——第二个模型(逻辑回归),pytorch,学习,逻辑回归
pytorch学习——第二个模型(逻辑回归),pytorch,学习,逻辑回归
pytorch学习——第二个模型(逻辑回归),pytorch,学习,逻辑回归文章来源地址https://www.toymoban.com/news/detail-602469.html

到了这里,关于pytorch学习——第二个模型(逻辑回归)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • pytorch深度学习逻辑回归 logistic regression

    结果  

    2024年02月16日
    浏览(56)
  • 【AI】机器学习——线性模型(逻辑斯蒂回归)

    逻辑回归输出的是实例属于每个类别的似然概率,似然概率最大的类别就是分类结果 在一定条件下,逻辑回归模型与朴素贝叶斯分类器等价 多分类问题可以通过多次二分类或者Softmax回归解决 3. 线性回归模型 4.4 线性分类模型——感知器 目标:用判别模型解决分类问题 4.1.

    2024年02月09日
    浏览(42)
  • 【机器学习300问】15、什么是逻辑回归模型?

            逻辑回归(Logistic Regression)是一种广义线性回归分析模型,尤其适用于解决 二分类问题 (输出为两个类别)。 邮件过滤 :判断一封电子邮件是否为垃圾邮件。结果为垃圾邮件(1)或非垃圾邮件(0); 医疗诊断 :判断病人是否患有某种疾病,如癌症。结果为患

    2024年01月22日
    浏览(46)
  • 机器学习:逻辑回归模型算法原理(附案例实战)

    作者:i阿极 作者简介:Python领域新星作者、多项比赛获奖者:博主个人首页 😊😊😊如果觉得文章不错或能帮助到你学习,可以点赞👍收藏📁评论📒+关注哦!👍👍👍 📜📜📜如果有小伙伴需要数据集和学习交流,文章下方有交流学习区!一起学习进步!💪 订阅专栏案

    2024年01月20日
    浏览(46)
  • 机械学习模型训练常用代码(随机森林、聚类、逻辑回归、svm、线性回归、lasso回归,岭回归)

    更多pandas操作请参考添加链接描述pandas对于文件数据基本操作 导入的包sklearn 字符串编码处理,LabelEncoder TfidfVectorizer结合TruncatedSVD 排除某一列,例如 如果需要用到回归则换成RandomForestRegressor 数据在dc_matrix里面 绘制距离 #加入到表里面 师范,保存文本模型,使用其转换,调

    2023年04月14日
    浏览(47)
  • 【机器学习300问】16、逻辑回归模型实现分类的原理?

            在上一篇文章中,我初步介绍了什么是逻辑回归模型,从它能解决什么问题开始介绍,并讲到了它长什么样子的。如果有需要的小伙伴可以回顾一下,链接我放在下面啦:                              【机器学习300问】15、什么是逻辑回归模型?     

    2024年01月25日
    浏览(55)
  • 把ChatGPT调教成机器学习专家,以逻辑回归模型的学习为例

    大家好我是章北海mlpy 看到一个蛮有意思的项目,可以把ChatGPT调教成导师 https://github.com/JushBJJ/Mr.-Ranedeer-AI-Tutor 可以根据你选择的学习难度、学习方向帮你制定学习计划 我用“如何学习逻辑回归模型”测试了一下,感觉还不错。 完整聊天记录如下 Zhang: { “ai_tutor”:{ \\\"作者

    2024年02月04日
    浏览(85)
  • 深度学习与逻辑回归模型的融合--TensorFlow多元分类的高级应用

    说到数字识别问题,这是一个分类问题,也就是我们要探讨的逻辑回归问题。逻辑回归是机器学习算法中非常经典的一种算法。 线性回归和逻辑回归的关系就是: 逻辑回归是广义的线性回归 。它们就是一个东西,只是范围不同。我在文章《深度学习在单线性回归方程中的应

    2024年02月04日
    浏览(49)
  • 【吴恩达·机器学习】第二章:单变量线性回归模型(代价函数、梯度下降、学习率、batch)

    博主简介: 努力学习的22级计算机科学与技术本科生一枚🌸 博主主页: @Yaoyao2024 每日一言🌼: 勇敢的人,不是不落泪的人,而是愿意含着泪继续奔跑的人。 ——《朗读者》 本系列博客文章是博主本人根据吴恩达老师2022年的机器学习课程所学而写,主要包括老师的核心讲义

    2024年02月19日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包