逻辑回归概述

这篇具有很好参考价值的文章主要介绍了逻辑回归概述。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

逻辑回归介绍

1. 逻辑回归的应用场景

逻辑回归(Logistic Regression)是机器学习中的 一种分类模型 ,逻辑回归是一种分类算法,虽然名字中带有回归。由于算法的简单和高效,在实际中应用非常广泛

  • 广告点击率
  • 是否为垃圾邮件
  • 是否患病
  • 信用卡账单是否会违约
    逻辑回归就是解决二分类问题的利器

2. 逻辑回归的原理

要想掌握逻辑回归,必须掌握两点:

  • 逻辑回归中,其输入值是什么

  • 如何判断逻辑回归的输出

2.1 输入

逻辑回归的输入就是一个线性方程

h ( w ) = w 1 x 1 + w 2 x 2 + w 3 x 3 + , ⋯   , + b \large h(w)=w_1x_1+w_2x_2+w_3x_3+,\cdots,+b h(w)=w1x1+w2x2+w3x3+,,+b

2.2 激活函数

sigmoid

Sigmod函数,也称之为逻辑斯特函数

假设一事件发生的概率为P,则不发生的概率为1-P,我们把发生概率/不发生概率称之为发生的概率比,数学公式表示为:
逻辑回归概述,笔记,讲义,逻辑回归,算法,机器学习

更进一步我们定义logit函数,它是概率比的对数函数(log-odds)

逻辑回归概述,笔记,讲义,逻辑回归,算法,机器学习

Logit函数的输入值范围介于[0,1]之间,它能将输入转换到整个实数范围内。

对logit函数求反函数,我们将logit的反函数叫做logistic函数:

逻辑回归概述,笔记,讲义,逻辑回归,算法,机器学习即sigmoid函数

g ( w T , x ) = 1 1 + e − h ( w ) = 1 1 + e − w T x g(w^T, x)=\frac{1}{1+e^{-h(w)}}=\frac{1}{1+e^{-w^Tx}} g(wT,x)=1+eh(w)1=1+ewTx1
绘制[-7,7]的sigmod函数图像文章来源地址https://www.toymoban.com/news/detail-602862.html

import matplotlib.pyplot as plt
import numpy as np
def sigmod(z):
    return 1.0/(1.0+np.exp(-z))
z=np.arange(-7,7,0.1)
phi_z=sigmod(z)
plt.plot(z,phi_z)
plt.axvline(0.0,color='k')
plt.axhspan(0.0,1.0,facecolor=

到了这里,关于逻辑回归概述的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习算法(一): 基于逻辑回归的分类预测

    逻辑回归的介绍 逻辑回归(Logistic regression,简称LR)虽然其中带有\\\"回归\\\"两个字,但逻辑回归其实是一个 分类 模型,并且广泛应用于各个领域之中。虽然现在深度学习相对于这些传统方法更为火热,但实则这些传统方法由于其独特的优势依然广泛应用于各个领域中。 而对于

    2024年01月15日
    浏览(49)
  • 机器学习算法:线性回归、逻辑回归、决策树和随机森林解析

    引言 机器学习算法是人工智能领域的核心,它们用于解决各种问题,从预测房价到图像分类。本博客将深入探讨四种常见的机器学习算法:线性回归、逻辑回归、决策树和随机森林。 线性回归 什么是线性回归? 线性回归是一种用于建立连续数值输出的机器学习模型的算法。

    2024年02月10日
    浏览(53)
  • 机器学习基础之《回归与聚类算法(4)—逻辑回归与二分类(分类算法)》

    一、什么是逻辑回归 1、逻辑回归(Logistic Regression)是机器学习中的一种分类模型,逻辑回归是一种分类算法,虽然名字中带有回归,但是它与回归之间有一定的联系。由于算法的简单和高效,在实际中应用非常广泛 2、叫回归,但是它是一个分类算法 二、逻辑回归的应用场

    2024年02月07日
    浏览(55)
  • 【白话机器学习的数学】读书笔记(3)学习分类(感知机、逻辑回归)

    1.分类的目的 找到一条线把白点和黑点分开。这条直线是使 权重向量成为法线向量 的直线。(解释见下图) 直线的表达式为: ω ⋅ x = ∑ i = 1 n ω i ⋅ x i = 0 omega·x = sum_{i=1}^nomega_i · x_i = 0 ω ⋅ x = i = 1 ∑ n ​ ω i ​ ⋅ x i ​ = 0 ω omega ω 是权重向量 权重向量就是我们想要知

    2024年01月18日
    浏览(55)
  • 机器学习算法基础--逻辑回归简单处理mnist数据集项目

    目录 1.项目背景介绍 2.Mnist数据导入 3.数据标签提取且划分数据集 4.数据特征标准化 5.模型建立与训练 6.后验概率判断及预测 7.处理模型阈值及准确率 8.阈值分析的可视化绘图 9.模型精确性的评价标准

    2024年02月07日
    浏览(49)
  • 【AI底层逻辑】——篇章5(上):机器学习算法之回归&分类

    目录 引入 一、何为机器学习 1、定规则和学规则 2、算法的定义

    2024年02月16日
    浏览(56)
  • 机器学习:基于梯度下降算法的逻辑回归实现和原理解析

    当涉及到二元分类问题时,逻辑回归是一种常用的机器学习算法。它不仅简单而且有效,通常是入门机器学习领域的第一步。本文将介绍逻辑回归的基本概念、原理、应用场景和代码示例。 逻辑回归是一种用于解决二元分类问题的统计学习方法。尽管其名称中包含\\\"回归\\\"一词

    2024年02月09日
    浏览(53)
  • python机器学习——分类模型评估 & 分类算法(k近邻,朴素贝叶斯,决策树,随机森林,逻辑回归,svm)

    交叉验证:为了让被评估的模型更加准确可信 交叉验证:将拿到的数据,分为训练和验证集。以下图为例:将数据分成5份,其中一份作为验证集。然后经过5次(组)的测试,每次都更换不同的验证集。即得到5组模型的结果,取平均值作为最终结果。又称5折交叉验证。 通常情

    2024年02月03日
    浏览(67)
  • 机器学习之回归算法-逻辑回归

    1.1、概念 是一种名为“回归”的线性分类器,是由线性回归变化而来的,一种广泛使用于分类问题中的广义回归算法。 1.2、按预测标签的数据类型分 连续型变量: 通过线性回归方程z,线性回归使用输入的特征矩阵X来输出一组连续型的标签值y_pred,以完成各种预测连续型变

    2024年02月04日
    浏览(35)
  • 机器学习笔记之优化算法(一)无约束优化概述

    从本节开始,将介绍 优化算法 ( Optimization Algorithm ) (text{Optimization Algorithm}) ( Optimization Algorithm ) 。 基于支持向量机 ( Support Vector Machine,SVM ) (text{Support Vector Machine,SVM}) ( Support Vector Machine,SVM ) 最大间隔分类器 的朴素思想: 从能够将所有样本点 正确分类 的直线中找到 满足

    2024年02月15日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包