【三维点云处理】顶点、面片、邻接矩阵、邻接距离矩阵以及稀疏存储概念

这篇具有很好参考价值的文章主要介绍了【三维点云处理】顶点、面片、邻接矩阵、邻接距离矩阵以及稀疏存储概念。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

vts和faces基础知识

vertices-节点(3是点的三维坐标)

Double类型的矩阵。用来存放所有构成mesh的节点,假设该mesh由N个三维节点构成,那么vertices就是一个N*3的矩阵,vertices(i, j) 表示了第i个节点第j维的坐标。

faces-面片(3是构成三角形面片的3个点)

Integer类型的矩阵。用来存放节点之间的连接关系。每一个面都由三个节点连接成的三角形构成,假设该mesh由M个三角面片构成,那么faces就是一个M*3的矩阵,faces(i, j)表示了构成第i个面片第j个角的节点序号。
【三维点云处理】顶点、面片、邻接矩阵、邻接距离矩阵以及稀疏存储概念,矩阵,线性代数文章来源地址https://www.toymoban.com/news/detail-603848.html

邻接矩阵

  • 每个面片都是一个小三角形,因此每个面片都可以延伸出来三条边
  • 所以边的数量 = 面片数量 × 3
  • 邻接矩阵的size为:边的数量
eg.
(0,1) 1
(0,15) 1
(0,66) 1
...
...
...

邻接距离矩阵(NN=500)

  • 实际上是计算离每个点最近的500个距离(NN是聚类中心的个数)
  • 邻接距离矩阵的size为:点的数量 × NN
eg.
(0,66) 0.0102
(0,71) 0.0106
(0,67) 0.0200
...
...
...

稀疏矩阵

  • 最终,将邻接距离矩阵转化为稀疏矩阵的存储格式即可
  • 注意:如果使用lil格式,在调用shortest_path函数可能出现list和int类型不能比较的错误!(解决方法是采用csr格式存储!)

到了这里,关于【三维点云处理】顶点、面片、邻接矩阵、邻接距离矩阵以及稀疏存储概念的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 三维变换矩阵实战——三维点云的旋转、缩放、镜像、错切、平移、正交投影

    旋转矩阵:右边矩阵是点云的原始坐标,左边的是旋转矩阵     可视化:绕x轴旋转90度 代码: 旋转矩阵:    可视化:绕y轴旋转180度 代码: 旋转矩阵:    可视化:绕z轴旋转90度 代码: 旋转矩阵:  线绕哪个轴转,xyz矩阵就和哪和轴的旋转矩阵先计算      可视化:先

    2024年02月04日
    浏览(89)
  • 二维图像处理到三维点云处理

    下面是opencv和pcl的特点、区别和联系的详细对比表格。 特点/区别/联系 OpenCV PCL 英文全称 Open Source Computer Vision Library Point Cloud Library 语言 C++、Python、Java C++ 功能 图像处理(图像处理和分析、特征提取和描述、图像识别和分类、目标检测和跟踪等)、计算机视觉 点云处理(点云处

    2024年02月05日
    浏览(40)
  • 数据结构——图的基本定义以及图的存储结构,邻接矩阵,邻接表

    目录 图的定义和术语 图的存储结构 顺序存储结构—邻接矩阵 链式存储结构 邻接表 邻接多重表 十字链表 图的遍历 图的连通性问题 有向无环图及其应用 最短路径 图的定义:图是一种非线性的复杂的数据结构,图中的数据元素的关系是多对多的关系 ,在图中我们常常把数

    2024年02月04日
    浏览(55)
  • 【数据结构】图的创建(邻接矩阵,邻接表)以及深度广度遍历(BFS,DFS)

    图是由顶点集合及顶点间的关系组成的一种数据结构:G = (V, E),其中: 顶点集合V = {x|x属于某个数据对象集}是有穷非空集合; E = {(x,y)|x,y属于V}或者E = {x, y|x,y属于V Path(x, y)}是顶点间关系的有穷集合,也叫 做边的集合。 完全图:在有n个顶点的无向图中,若有n * (n-1)/2条边,

    2024年02月04日
    浏览(42)
  • 【数理知识】求两个三维空间点的坐标矩阵之间,任意两两点之间的空间距离,matlab 实现

    假设有两个包含了三维空间点坐标的,三维向量集 A A A 和 B B B ,两集合中分别有 m m m 个和 n n n 个三维空间坐标点,可以用矩阵表示为 A = [ a 1 x a 2 x a 3 x ⋯ a m x a 1 y a 2 y a 3 y ⋯ a m y a 1 z a 2 z a 3 z ⋯ a m z ] 3 × m , B = [ b 1 x b 2 x b 3 x ⋯ b n x b 1 y b 2 y b 3 y ⋯ b n y b 1 z b 2 z b 3 z ⋯

    2024年02月11日
    浏览(47)
  • 【计算机视觉】基于三维重建和点云处理的扫地机器人寻路

    [摘要] 扫地机器人的使用已经越发普及,其中应用到了三维重建的知识。本项目旨在设计由一   定数量的图像根据算法完成三维模型的建立,并利用三维数据最终得到扫地机器人的行驶路   线,   完成打扫机器人成功寻路的任务   。本项目采用的方法是 SFM-MVS   、Colmap  

    2024年01月21日
    浏览(54)
  • Open3D点云数据处理(二十):最小二乘直线拟合(三维)

    专栏目录:Open3D点云数据处理(Python) 最小二乘三维直线拟合的原理是通过最小化数据点到直线距离的平方和,找到最优的直线模型来拟合给定数据集。这个距离是指数据点到直线的垂线距离。 三维直线通常表示为两个平面的交线,形如 { A

    2024年02月12日
    浏览(46)
  • 开源,点云处理及三维重建软件(Point Cloud Viewer, PCV)的设计与实现

    GitHub地址:point-cloud-viewer GitCode地址:point-cloud-viewer 笔者于2021年底开始,着手设计并实现这款点云处理及三维重建软件Point Cloud Viewer, PCV,历时三个月,完成该软件的大部分功能实现。由于笔者转行做嵌入式底层相关工作,不再研究点云处理相关技术,PCV的后续功能实现就一

    2024年02月01日
    浏览(34)
  • 图的数据结构,系统学习图的基本概念、定义和建立,学会邻接矩阵、邻接表以及实现六度空间案例,遍历图的方式——广度、深度访问

    图 :G = (V,E) Graph = (Vertex, Edge) V:顶点(数据元素)的有穷非空集合; E:边的有穷集合。 有向图 :每条边都是有方向的     无向图 :每条边都是无方向的   完全图 :任意两点之间都有一条边相连    无向完全图:n个顶点,n(n-1)/2条边 无向完全图:n个顶点,n(n-1)条边 稀疏

    2023年04月22日
    浏览(45)
  • Open3D点云数据处理(十九):最小二乘直线拟合(矩阵方程法)

    专栏目录:Open3D点云数据处理(Python) 最小二乘直线拟合是一种常用的数据拟合方法,它的目标是找到一条直线,使得该直线和样本数据之间的误差平方和最小。从矩阵方程的角度来看,最小二乘直线拟合可以看作是求解一个超定线性方程组的问题。 具体来说,我们假设有

    2024年02月13日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包