Factorization Machines(论文笔记)

这篇具有很好参考价值的文章主要介绍了Factorization Machines(论文笔记)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

样例一:

一个简单的例子,train是一个字典,先将train进行“one-hot” coding,然后输入相关特征向量,可以预测相关性。

from pyfm import pylibfm
from sklearn.feature_extraction import DictVectorizer
import numpy as np
train = [
	{"user": "1", "item": "5", "age": 19},
	{"user": "2", "item": "43", "age": 33},
	{"user": "3", "item": "20", "age": 55},
	{"user": "4", "item": "10", "age": 20},
]
v = DictVectorizer()
X = v.fit_transform(train)
print(X.toarray())
y = np.repeat(1.0,X.shape[0])
#print(X.shape[0])
fm = pylibfm.FM()
fm.fit(X,y)
fm.predict(v.transform({"user": "1", "item": "10", "age": 40}))
输出:
[[19.  0.  0.  0.  1.  1.  0.  0.  0.]
 [33.  0.  0.  1.  0.  0.  1.  0.  0.]
 [55.  0.  1.  0.  0.  0.  0.  1.  0.]
 [20.  1.  0.  0.  0.  0.  0.  0.  1.]]
4
Creating validation dataset of 0.01 of training for adaptive regularization
-- Epoch 1
Training log loss: 0.37518
array([0.9999684])

样例二:

是基于真实的电影评分数据来训练。数据集点击下载即可。

import numpy as np
from sklearn.feature_extraction import DictVectorizer
from pyfm import pylibfm

# Read in data
def loadData(filename,path="ml-100k/"):
    data = []
    y = []
    users=set()
    items=set()
    with open(path+filename) as f:
        for line in f:
            (user,movieid,rating,ts)=line.split('\t')
            data.append({ "user_id": str(user), "movie_id": str(movieid)})
            y.append(float(rating))
            users.add(user)
            items.add(movieid)

    return (data, np.array(y), users, items)

(train_data, y_train, train_users, train_items) = loadData("ua.base")
(test_data, y_test, test_users, test_items) = loadData("ua.test")
v = DictVectorizer()
X_train = v.fit_transform(train_data)
X_test = v.transform(test_data)

# Build and train a Factorization Machine
fm = pylibfm.FM(num_factors=10, num_iter=100, verbose=True, task="regression", initial_learning_rate=0.001, learning_rate_schedule="optimal")

fm.fit(X_train,y_train)

# Evaluate
preds = fm.predict(X_test)
from sklearn.metrics import mean_squared_error
print("FM MSE: %.4f" % mean_squared_error(y_test,preds))
输出:
Creating validation dataset of 0.01 of training for adaptive regularization
-- Epoch 1
Training MSE: 0.59525
-- Epoch 2
Training MSE: 0.51804
-- Epoch 3
Training MSE: 0.49046
-- Epoch 4
Training MSE: 0.47458
-- Epoch 5
Training MSE: 0.46416
-- Epoch 6
Training MSE: 0.45662
-- Epoch 7
Training MSE: 0.45099
-- Epoch 8
Training MSE: 0.44639
-- Epoch 9
Training MSE: 0.44264
-- Epoch 10
Training MSE: 0.43949
-- Epoch 11
Training MSE: 0.43675
-- Epoch 12
Training MSE: 0.43430
-- Epoch 13
Training MSE: 0.43223
-- Epoch 14
Training MSE: 0.43020
-- Epoch 15
Training MSE: 0.42851
-- Epoch 16
Training MSE: 0.42691
-- Epoch 17
Training MSE: 0.42531
-- Epoch 18
Training MSE: 0.42389
-- Epoch 19
Training MSE: 0.42255
-- Epoch 20
Training MSE: 0.42128
-- Epoch 21
Training MSE: 0.42003
-- Epoch 22
Training MSE: 0.41873
-- Epoch 23
Training MSE: 0.41756
-- Epoch 24
Training MSE: 0.41634
-- Epoch 25
Training MSE: 0.41509
-- Epoch 26
Training MSE: 0.41391
-- Epoch 27
Training MSE: 0.41274
-- Epoch 28
Training MSE: 0.41149
-- Epoch 29
Training MSE: 0.41032
-- Epoch 30
Training MSE: 0.40891
-- Epoch 31
Training MSE: 0.40774
-- Epoch 32
Training MSE: 0.40635
-- Epoch 33
Training MSE: 0.40495
-- Epoch 34
Training MSE: 0.40354
-- Epoch 35
Training MSE: 0.40203
-- Epoch 36
Training MSE: 0.40047
-- Epoch 37
Training MSE: 0.39889
-- Epoch 38
Training MSE: 0.39728
-- Epoch 39
Training MSE: 0.39562
-- Epoch 40
Training MSE: 0.39387
-- Epoch 41
Training MSE: 0.39216
-- Epoch 42
Training MSE: 0.39030
-- Epoch 43
Training MSE: 0.38847
-- Epoch 44
Training MSE: 0.38655
-- Epoch 45
Training MSE: 0.38461
-- Epoch 46
Training MSE: 0.38269
-- Epoch 47
Training MSE: 0.38068
-- Epoch 48
Training MSE: 0.37864
-- Epoch 49
Training MSE: 0.37657
-- Epoch 50
Training MSE: 0.37459
-- Epoch 51
Training MSE: 0.37253
-- Epoch 52
Training MSE: 0.37045
-- Epoch 53
Training MSE: 0.36845
-- Epoch 54
Training MSE: 0.36647
-- Epoch 55
Training MSE: 0.36448
-- Epoch 56
Training MSE: 0.36254
-- Epoch 57
Training MSE: 0.36067
-- Epoch 58
Training MSE: 0.35874
-- Epoch 59
Training MSE: 0.35690
-- Epoch 60
Training MSE: 0.35511
-- Epoch 61
Training MSE: 0.35333
-- Epoch 62
Training MSE: 0.35155
-- Epoch 63
Training MSE: 0.34992
-- Epoch 64
Training MSE: 0.34829
-- Epoch 65
Training MSE: 0.34675
-- Epoch 66
Training MSE: 0.34538
-- Epoch 67
Training MSE: 0.34393
-- Epoch 68
Training MSE: 0.34258
-- Epoch 69
Training MSE: 0.34129
-- Epoch 70
Training MSE: 0.34006
-- Epoch 71
Training MSE: 0.33885
-- Epoch 72
Training MSE: 0.33773
-- Epoch 73
Training MSE: 0.33671
-- Epoch 74
Training MSE: 0.33564
-- Epoch 75
Training MSE: 0.33468
-- Epoch 76
Training MSE: 0.33375
-- Epoch 77
Training MSE: 0.33292
-- Epoch 78
Training MSE: 0.33211
-- Epoch 79
Training MSE: 0.33131
-- Epoch 80
Training MSE: 0.33065
-- Epoch 81
Training MSE: 0.33002
-- Epoch 82
Training MSE: 0.32930
-- Epoch 83
Training MSE: 0.32882
-- Epoch 84
Training MSE: 0.32813
-- Epoch 85
Training MSE: 0.32764
-- Epoch 86
Training MSE: 0.32722
-- Epoch 87
Training MSE: 0.32677
-- Epoch 88
Training MSE: 0.32635
-- Epoch 89
Training MSE: 0.32591
-- Epoch 90
Training MSE: 0.32550
-- Epoch 91
Training MSE: 0.32513
-- Epoch 92
Training MSE: 0.32481
-- Epoch 93
Training MSE: 0.32451
-- Epoch 94
Training MSE: 0.32421
-- Epoch 95
Training MSE: 0.32397
-- Epoch 96
Training MSE: 0.32363
-- Epoch 97
Training MSE: 0.32341
-- Epoch 98
Training MSE: 0.32319
-- Epoch 99
Training MSE: 0.32293
-- Epoch 100
Training MSE: 0.32268
FM MSE: 0.8873

 样例三:是一个分类的样例

import numpy as np
from sklearn.feature_extraction import DictVectorizer
from sklearn.model_selection import train_test_split
from pyfm import pylibfm

from sklearn.datasets import make_classification

X, y = make_classification(n_samples=1000,n_features=100, n_clusters_per_class=1)
data = [ {v: k for k, v in dict(zip(i, range(len(i)))).items()}  for i in X]

X_train, X_test, y_train, y_test = train_test_split(data, y, test_size=0.1, random_state=42)

v = DictVectorizer()
X_train = v.fit_transform(X_train)
X_test = v.transform(X_test)

fm = pylibfm.FM(num_factors=50, num_iter=10, verbose=True, task="classification", initial_learning_rate=0.0001, learning_rate_schedule="optimal")

fm.fit(X_train,y_train)

from sklearn.metrics import log_loss
print("Validation log loss: %.4f" % log_loss(y_test,fm.predict(X_test)))
输出:
Creating validation dataset of 0.01 of training for adaptive regularization
-- Epoch 1
Training log loss: 2.12467
-- Epoch 2
Training log loss: 1.74185
-- Epoch 3
Training log loss: 1.42232
-- Epoch 4
Training log loss: 1.16085
-- Epoch 5
Training log loss: 0.94964
-- Epoch 6
Training log loss: 0.78052
-- Epoch 7
Training log loss: 0.64547
-- Epoch 8
Training log loss: 0.53758
-- Epoch 9
Training log loss: 0.45132
-- Epoch 10
Training log loss: 0.38187
Validation log loss: 1.3678

代码:pyFM/pyfm/pylibfm.py at master · coreylynch/pyFM (github.com)文章来源地址https://www.toymoban.com/news/detail-603972.html

到了这里,关于Factorization Machines(论文笔记)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 04 MIT线性代数-矩阵的LU分解 Factorization into A=LU

    目的: 从矩阵的角度理解高斯消元法, 完成 LU 分解得到 A = LU U 为上三角阵(Upper triangular matrix),  L 为下三角阵(Lower triangular matrix), 通过分解得到对角阵 D (diagonal matrix) 设定一组消元矩阵,其中 E31 为单位阵 I ,其它两个消元矩阵如下: row3 -5 newrow2 = row3 -5( row2 -2 row1 )= row3 -

    2024年02月07日
    浏览(27)
  • https://app.hackthebox.com/machines/Squashed

    info collecting mount nfs files create user or: bash -i /dev/tcp/10.10.16.15/1337 01 browser 2.php create user ross su ross squash wget the .Xauthority Get the root’s desktop pic Wget the haha.xwd su root get the flag Ref:[https://www.jianshu.com/p/ef5201d9ffe7] (https://www.jianshu.com/p/ef5201d9ffe7) Squashed HTB Writeup https://www.jianshu.com/p/ef520

    2024年02月11日
    浏览(64)
  • https://app.hackthebox.com/machines/Soccer

    https://app.hackthebox.com/machines/Soccer search exploit Download ZIP with latest version from master branch. Just copy the tinyfilemanager.php to your webspace - thats all 😃 You can also change the file name from “tinyfilemanager.php” to something else, you know what i meant for. Default username/password: admin/admin@123 and user/12345 . ⚠️ War

    2024年02月16日
    浏览(26)
  • https://app.hackthebox.com/machines/Sau

    next time http://10.10.11.224:55555/haha35 altrail Documentation | Wiki | Issues | Log In Trails close Powered by Maltrail (v0.53) Hide threat Report false positive https://nvd.nist.gov/vuln/detail/CVE-2023-27163 https://github.com/spookier/Maltrail-v0.53-Exploit POC http://10.10.11.224:55555/haha35/ http://10.10.11.224:55555/haha352 curl ‘http://10.10.11.

    2024年02月14日
    浏览(43)
  • Common Sense Machines(CSM):立志成为图像生成适用于游戏引擎的3D资产AI产品

    详细说明 Common Sense Machines(CMS):立志成为图像生成适用于游戏引擎的3D资产AI产品-喜好儿aigc 详细说明:https://heehel.com/CSM-3d 官方网站:https://www.csm.ai/ 使用体验网址:https://3d.csm.ai/ 来自普纳的前 Google DeepMind 研究科学家 Tejas Kulkarni 与他人共同创立了 Common Sense Machines, htt

    2024年03月10日
    浏览(46)
  • 【Microsoft Azure 的1024种玩法】六十.通过Azure Virtual Machines快速搭建个人Ghost博客系统

    Ghost 是一套基于Node.js 语言开发构建的开源博客系统,它的整体架构为前端管理系统基于Ember.js, 后端的模板引擎采用的handlebars, 数据库是基于MySQL的,本篇文章主要介绍了如何通过Azure Virtual Machines快速搭建个人Ghost博客系统 【Microsoft Azure 的1024种玩法】一.一分钟快速上手搭

    2024年02月06日
    浏览(32)
  • 【Microsoft Azure 的1024种玩法】三十八.通过Azure Function App实现对Azure Virtual Machines定时开关机

    Azure Functions 函数应用是运行在Azure云端的轻量级,可重用的代码应用,Azure Functions 可让我们编写更少的代码、维护更少的基础架构并节省成本,通过使用Azure Functions 函数应用我们无需关心服务器或底层运维设施,我们只需要关注代码的编写和业务本身即可,本篇文章主要通

    2024年02月05日
    浏览(31)
  • [论文阅读笔记18] DiffusionDet论文笔记与代码解读

    扩散模型近期在图像生成领域很火, 没想到很快就被用在了检测上. 打算对这篇论文做一个笔记. 论文地址: 论文 代码: 代码 首先介绍什么是扩散模型. 我们考虑生成任务, 即encoder-decoder形式的模型, encoder提取输入的抽象信息, 并尝试在decoder中恢复出来. 扩散模型就是这一类中的

    2023年04月08日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包