计算机科学cs/电子信息ei面试准备——数学基础/线性代数复习

这篇具有很好参考价值的文章主要介绍了计算机科学cs/电子信息ei面试准备——数学基础/线性代数复习。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

1. 中值定理

2. 梯度和散度

方向导数和梯度

通量与散度

3. 泰勒公式是为了解决什么问题的?

4. 矩阵的秩是什么,矩阵的秩物理意义?

矩阵的秩

矩阵秩的物理意义

5. 特征值和特征向量的概念

5.1 传统方法

例题

5.2 雅可比迭代法

6. 什么是线性相关以及线性相关的性质?

7. 中心极限定理以及它的研究意义是什么?


1. 中值定理

中值定理是反映函数与导数之间联系的重要定理,也是微积分学的理论基础,在许多方面它都有重要的作用,在进行一些公式推导与定理证明中都有很多应用。中值定理是由众多定理共同构建的,其中拉格朗日中值定理是核心,罗尔定理是其特殊情况,柯西定理是其推广,还有泰勒定理。

计算机科学cs/电子信息ei面试准备——数学基础/线性代数复习,上岸上岸上岸,线性代数,机器学习,人工智能

计算机科学cs/电子信息ei面试准备——数学基础/线性代数复习,上岸上岸上岸,线性代数,机器学习,人工智能

中值定理_百度百科

计算机科学cs/电子信息ei面试准备——数学基础/线性代数复习,上岸上岸上岸,线性代数,机器学习,人工智能

2. 梯度和散度

方向导数和梯度

计算机科学cs/电子信息ei面试准备——数学基础/线性代数复习,上岸上岸上岸,线性代数,机器学习,人工智能

标量场的梯度是一个矢量场!

这就是说,▽φ的模就是▽φ在给定点的最大方向导数,而其方向就是该具有最大方向导数的方向,亦即▽ φ的变化率最大的方向。 因此,我们定义标量场▽φ(x, y, z)在点P(x, y, z)处的梯度(gradient)为:

计算机科学cs/电子信息ei面试准备——数学基础/线性代数复习,上岸上岸上岸,线性代数,机器学习,人工智能

​​​​​​​ 它是一个矢量,其模和方向就是标量场φ在该点最大变化率的值和方向。

计算机科学cs/电子信息ei面试准备——数学基础/线性代数复习,上岸上岸上岸,线性代数,机器学习,人工智能

后一式表明,梯度▽φ的方向与过该点的等值面相垂直,并由梯度定义知,它指向φ增大的方向。 由此,等值面的法线方向单位矢量可用梯度表示为

通量与散度

在描绘矢量场的特性时,矢量场穿过一个曲面的通量是一个很有用的概念。 在矢量分析中,将曲面的一个面元用矢量ds来表示,其方向取为面元的法线方向, 其大小为ds, 即

是面元的法线方向单位矢量。的取法(指向)有两种情形: 对开曲面上的面元,设这个开曲面是由封闭曲线l所围成的,则当选定绕行l的方向后,沿绕行方向按右手螺旋的姆指方向就是的方向,如图1 -4所示;对封闭曲面上的面元,取为封闭面的外法线方向。

计算机科学cs/电子信息ei面试准备——数学基础/线性代数复习,上岸上岸上岸,线性代数,机器学习,人工智能

将曲面S各面元上的A·ds相加,它表示A穿过整个曲面S的通量,也称为A在曲面S上的面积分:

计算机科学cs/电子信息ei面试准备——数学基础/线性代数复习,上岸上岸上岸,线性代数,机器学习,人工智能

定义如下极限为矢量A在某点的散度(divergence),记为divA:

计算机科学cs/电子信息ei面试准备——数学基础/线性代数复习,上岸上岸上岸,线性代数,机器学习,人工智能

式中ΔV为封闭面S所包围的体积。 此式表明, 矢量A的散度是标量, 它是A通过某点处单位体积的通量(即通量体密度)。 它反映A在该点的通量源强度。 显然,在无源区中,A在各点的散度为零。 这个区域中的矢量场称为无散场或管形场。

 A的散度可表示为算子与矢量A的标量积:

计算机科学cs/电子信息ei面试准备——数学基础/线性代数复习,上岸上岸上岸,线性代数,机器学习,人工智能

3. 泰勒公式是为了解决什么问题的?

泰勒公式:将函数展开为一个多项式与一个余项的和;

泰勒公式应用:

(1)应用泰勒中值定理(泰勒公式)可以证明中值等式或不等式命题。

(2)应用泰勒公式可以证明区间上的函数等式或不等式。

(3)应用泰勒公式可以进行更加精密的近似计算。(用多项式近似表示函数;)

(4)应用泰勒公式可以求解一些极限。

(5)应用泰勒公式可以计算高阶导数的数值。

它将一些复杂的函数逼近近似地表示为简单的多项式函数,泰勒公式这种化繁为简的功能,使得它成为分析和研究许多数学问题的有力工具。

常用的泰勒公式如下:

计算机科学cs/电子信息ei面试准备——数学基础/线性代数复习,上岸上岸上岸,线性代数,机器学习,人工智能

4. 矩阵的秩是什么,矩阵的秩物理意义?

矩阵的秩

矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数,通常表示为r(A),rk(A)或rank A。类似地,行秩是A的线性无关的横行的极大数目。通俗一点说,如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。

矩阵秩的物理意义

矩阵秩是线性代数中一个重要的概念,它描述了矩阵所包含的线性无关的列或行的数量。在物理学中,矩阵秩有着广泛的应用,特别是在矩阵分析、电路分析、力学和量子力学等领域。

在矩阵分析中,矩阵秩可以用来描述矩阵的性质和特征。例如,一个矩阵的秩为1,意味着它只有一个非零的列或行,这种矩阵通常被称为“秩一矩阵”。在物理学中,秩一矩阵通常用来描述一些特殊的物理现象,例如光的偏振、电磁波的传播和量子态的叠加等。

在电路分析中,矩阵秩可以用来描述电路的稳定性和可控性。例如,一个电路的秩为n,意味着它有n个独立的节点,这些节点可以被控制和测量。在物理学中,电路的秩可以用来描述电路的复杂性和可靠性,特别是在微电子学和通信领域。

在力学中,矩阵秩可以用来描述物体的运动和变形。例如,一个刚体的运动可以用一个6×6的矩阵来描述,其中前三行表示刚体的位置,后三行表示刚体的角度。这个矩阵的秩为6,意味着刚体的位置和角度是独立的,可以被分别控制和测量。在物理学中,矩阵秩可以用来描述物体的运动和变形,特别是在机械工程和航空航天领域。

在量子力学中,矩阵秩可以用来描述量子态的叠加和演化。例如,一个量子态可以用一个n×n的矩阵来描述,其中每个元素表示量子态的振幅。这个矩阵的秩为r,意味着量子态可以被分解为r个独立的态,每个态可以被控制和测量。在物理学中,矩阵秩可以用来描述量子态的叠加和演化,特别是在量子计算和量子通信领域。

矩阵秩是物理学中一个重要的概念,它可以用来描述物理现象的性质和特征。在不同的领域中,矩阵秩有着不同的应用和意义,但它们都反映了矩阵所包含的线性无关的列或行的数量。因此,矩阵秩是物理学中一个基础而又重要的概念,值得我们深入研究和探讨。

5. 特征值和特征向量的概念

A为n阶矩阵,若数λ和n维非0列向量x满足Ax=λx,那么数λ称为A的特征值,x称为A的对应于特征值λ的特征向量。式Ax=λx也可写成(A-λE)x=0,并且|λE-A|叫做A 的特征多项式。当特征多项式等于0的时候,称为A的特征方程,特征方程是一个齐次线性方程组,求解特征值的过程其实就是求解特征方程的解。

依据普通线性代数中的概念,特征值和特征向量能够用传统的方法求得,可是实际项目中一般都是用数值分析的方法来计算。

5.1 传统方法

定义1:设A是n阶方阵,若存在数和非零向量,

使得

则称是A的一个特征值

x为A的对应于特征值的特征向量

计算机科学cs/电子信息ei面试准备——数学基础/线性代数复习,上岸上岸上岸,线性代数,机器学习,人工智能

为矩阵A的特征多项式,记作 

计算机科学cs/电子信息ei面试准备——数学基础/线性代数复习,上岸上岸上岸,线性代数,机器学习,人工智能

推论        n阶方阵A可逆的充要条件是A的n个特征值非零

即利用特征多项式可以求出所有的特征值,特征值之和等于原矩阵对角线元素之和,特征值的乘积等于原矩阵A的行列式的值。

特征多项式的乘积等于矩阵之积。

例题

计算机科学cs/电子信息ei面试准备——数学基础/线性代数复习,上岸上岸上岸,线性代数,机器学习,人工智能

计算:A的特征值和特征向量。
计算机科学cs/电子信息ei面试准备——数学基础/线性代数复习,上岸上岸上岸,线性代数,机器学习,人工智能

计算机科学cs/电子信息ei面试准备——数学基础/线性代数复习,上岸上岸上岸,线性代数,机器学习,人工智能

 计算机科学cs/电子信息ei面试准备——数学基础/线性代数复习,上岸上岸上岸,线性代数,机器学习,人工智能

=

​​​​​​​计算机科学cs/电子信息ei面试准备——数学基础/线性代数复习,上岸上岸上岸,线性代数,机器学习,人工智能

计算机科学cs/电子信息ei面试准备——数学基础/线性代数复习,上岸上岸上岸,线性代数,机器学习,人工智能

令x=1,便可得出一个基础解系:

计算机科学cs/电子信息ei面试准备——数学基础/线性代数复习,上岸上岸上岸,线性代数,机器学习,人工智能

同理当时,得出:

计算机科学cs/电子信息ei面试准备——数学基础/线性代数复习,上岸上岸上岸,线性代数,机器学习,人工智能

同样可以得出特征向量

计算机科学cs/电子信息ei面试准备——数学基础/线性代数复习,上岸上岸上岸,线性代数,机器学习,人工智能  

5.2 雅可比迭代法

雅可比方法用于求实对称矩阵的所有特征值、特征向量。Jacobi算法计算简单、稳定性好、精度高、求得的特征向量正交性好。但当A为稀疏阵时,Givens旋转变换将破坏其稀疏性,且只能适用于实对称矩阵。

6. 什么是线性相关以及线性相关的性质?

​​​​​​​2.1 线性相关、线性无关|《线性代数》 - 知乎

7. 中心极限定理以及它的研究意义是什么?

中心极限定理(CLT)指出,如果样本量足够大,则变量均值的采样分布将近似于正态分布,而与该变量在总体中的分布无关。

中心极限定理意味着即使数据分布不是正态的,从中抽取的样本均值的分布也是正态的。

​​​​​​​百度安全验证文章来源地址https://www.toymoban.com/news/detail-604034.html

到了这里,关于计算机科学cs/电子信息ei面试准备——数学基础/线性代数复习的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • SciencePub学术 | 计算机工程类重点SCI&EI征稿中

    【SciencePub学术】   刊源推荐: 计算机工程类重点SCIEI征稿中!录用率高,接收范围广,数学、工程、管理等与计算机相结合的领域,不容错过!信息如下,录满为止: 一、期刊概况: 计算机工程类重点SCIEI 【期刊简介】IF:1.5-2.0,JCR4区,中科院4区; 【版面类别】正刊; 【

    2024年02月08日
    浏览(46)
  • 计算机科学速成课

    建议看看 计算机科学速成课 ,一门很全面的计算机原理入门课程,短短10分钟可以把大学老师十几节课讲的东西讲清楚!整个系列一共41个视频,B站上有中文字幕版。 每个视频都是一个特定的主题,例如软件工程、人工智能、操作系统等,主题之间都是紧密相连的,比国内

    2024年02月05日
    浏览(47)
  • 计算机毕业设计 基于SSM+Vue的医院门诊互联电子病历管理信息系统的设计与实现 Java实战项目 附源码+文档+视频讲解

    博主介绍:✌从事软件开发10年之余,专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ 🍅文末获取源码联系🍅 👇🏻 精彩专栏推荐订阅👇🏻 不然下次找不到哟 ——————————

    2024年02月07日
    浏览(76)
  • EI会议推荐-第三届计算机工程与智能通信国际研讨会(ISCEIC 2022)

    第三届计算机工程与智能通信国际研讨会(ISCEIC 2022) 2022 3rd International Symposium on Computer Engineering and Intelligent Communications 2022年9月16-18日 ,中国·西安 http://isceic.org https://www.ais.cn/attendees/index/NBJQQU EI compendex、scopus 会议简介 第三届计算机工程与智能通信国际研讨会(ISCEIC 2022)将

    2023年04月08日
    浏览(41)
  • 【EI/SCOPUS检索】第三届计算机视觉、应用与算法国际学术会议(CVAA 2023)

    第三届计算机视觉、应用与算法国际学术会议(CVAA 2023) The 3rd International Conference on Computer Vision, Application and Algorithm   2023年第三届计算机视觉、应用与算法国际学术会议(CVAA 2023) 主要围绕计算机视觉、计算机应用、计算机算法等研究领域展开讨论。会议旨在为从事相关科

    2024年02月13日
    浏览(45)
  • 【EI/SCOPUS会议征稿】第四届机器学习与计算机应用国际学术会议(ICMLCA 2023)

    ICMLCA 2023 第四届机器学习与计算机应用国际学术会议 2023 4th International Conference on Machine Learning and Computer Application 第四届机器学习与计算机应用国际学术会议(ICMLCA 2023) 定于2023年10月27-29日在中国杭州隆重举行。本届会议将主要关注机器学习和计算机应用面临的新的挑战问题和

    2024年02月15日
    浏览(52)
  • 【人工智能课程】计算机科学博士作业一

    模型拟合:用深度神经网络拟合一个回归模型。从各种角度对其改进,评价指标为MSE。 掌握技巧: 熟悉并掌握深度学习模型训练的基本技巧。 提高PyTorch的使用熟练度。 掌握改进深度学习的方法。 数据集下载: Kaggle下载数据: https://www.kaggle.com/competitions/ml2022spring-hw1 百度云

    2024年01月23日
    浏览(60)
  • 数据结构与算法:计算机科学的基石

    🎉欢迎来到数据结构学习专栏~数据结构与算法:计算机科学的基石 ☆* o(≧▽≦)o *☆嗨~我是IT·陈寒🍹 ✨博客主页:IT·陈寒的博客 🎈该系列文章专栏:数据结构学习 📜其他专栏:Java学习路线 Java面试技巧 Java实战项目 AIGC人工智能 🍹文章作者技术和水平有限,如果文中

    2024年02月11日
    浏览(54)
  • 浙大pta《计算机科学与基础》经典例题

    1.执行语句print(100.5//5)的结果是20 注意答案:False 结果是20.0,//——整除,/——浮点数除法 2.高级语言程序要被机器执行,只有用解释器来解释执行 答案:False 3.下面程序输入是 3 5 ,输出是8 注意:Python输入是默认为字符串,所以此题输出应该为:‘3’‘5’; 答案:False 4

    2023年04月18日
    浏览(54)
  • 【人工智能课程】计算机科学博士作业三

    来源:李宏毅2022课程第10课的作业 图片攻击是指故意对数字图像进行修改,以使机器学习模型产生错误的输出或者产生预期之外的结果。这种攻击是通过将微小的、通常对人类难以察觉的扰动应用于输入图像来实现的。图片攻击是对深度学习系统中的鲁棒性和安全性的一种测

    2024年03月16日
    浏览(75)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包