论文笔记--Skip-Thought Vectors

这篇具有很好参考价值的文章主要介绍了论文笔记--Skip-Thought Vectors。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1. 文章简介

  • 标题:Skip-Thought Vectors
  • 作者:Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S. Zemel, Antonio Torralba, Raquel Urtasun, Sanja Fidler
  • 日期:2015
  • 期刊:NIPS

2. 文章概括

  文章提出了Skip Thought模型,旨在提供一种句向量的预训练方式。文章的核心思想类似于Word2Vec的skip-gram方法,即通过当前句子预测上下文句子。整体架构如下
论文笔记--Skip-Thought Vectors,论文阅读,论文阅读,rnn,skip-thought,word2vec,gru

3 文章重点技术

3.1 Skip Thought Vectors

  文章的整体架构选用基于GRU的encoder-decoder网络架构。给定输入的句子三元组 ( s i − 1 , s i , s i + 1 ) (s_{i-1}, s_{i}, s_{i+1}) (si1,si,si+1),令 w i t w_i^t wit表示句子 s i s_i si的第 t t t个单词, x i t x_i^t xit表示其对应的单词嵌入。
  首先模型对输入的句子 s i s_i si进行编码,encoder国策可表示为下面的GRU公式: r t = σ ( W r x t + U r h t − 1 ) ∈ ( 0 , 1 ) , z t = σ ( W z x t + U z h t − 1 ) ∈ ( 0 , 1 ) , h ‾ t = tanh ⁡ ( W x t + U ( r t ⊙ h t − 1 ) ) , h t = ( 1 − z t ) ⊙ h t − 1 + z t ⊙ h ‾ t r^t = \sigma (W_r x^t + U_r h^{t-1}) \in (0, 1), \\z^t = \sigma (W_z x^t + U_z h^{t-1}) \in (0, 1), \\\overline{h}^t = \tanh (Wx^t + U(r^t \odot h^{t-1})) ,\\ h^t = (1-z^t)\odot h^{t-1} + z^t \odot \overline{h}^t rt=σ(Wrxt+Urht1)(0,1),zt=σ(Wzxt+Uzht1)(0,1),ht=tanh(Wxt+U(rtht1)),ht=(1zt)ht1+ztht,其中 r t , z t ∈ ( 0 , 1 ) r^t, z^t \in (0, 1) rt,zt(0,1)表示重置门和更新门, h ‾ t \overline{h}^t ht表示候选的隐藏状态,其更新到 t t t时刻的隐藏层比例由更新门 z t z^t zt确定,其从上一个时刻隐藏层输入的比例由重置门 r t r^t rt确定。
  接下来将句子编码分别传入到解码GRU中,用于预测当前句子相邻的上/下一个句子 s i − 1 , s i + 1 s_{i-1}, s_{i+1} si1,si+1,省略角标 i − 1 , i + 1 i-1, i+1 i1,i+1,相邻两个句子的解码公式均为 r t = σ ( W r d x t − 1 + U r d h t − 1 + C r h i ) ∈ ( 0 , 1 ) , z t = σ ( W z d x t + U z d h t − 1 ) + C z h i ∈ ( 0 , 1 ) , h ‾ t = tanh ⁡ ( W d x t + U d ( r t ⊙ h t − 1 ) + C h i ) , h t = ( 1 − z t ) ⊙ h t − 1 + z t ⊙ h ‾ t r^t = \sigma (W_r^d x^{t-1} + U_r^d h^{t-1} + C_r h_i )\in (0, 1), \\z^t = \sigma (W_z^d x^t + U_z^d h^{t-1}) + C_z h_i \in (0, 1), \\\overline{h}^t = \tanh (W^dx^t + U^d(r^t \odot h^{t-1}) + Ch_i) ,\\ h^t = (1-z^t)\odot h^{t-1} + z^t \odot \overline{h}^t rt=σ(Wrdxt1+Urdht1+Crhi)(0,1),zt=σ(Wzdxt+Uzdht1)+Czhi(0,1),ht=tanh(Wdxt+Ud(rtht1)+Chi),ht=(1zt)ht1+ztht,即计算当前时刻的解码输出时,会考虑上一时刻的输入词嵌入和当前时刻的编码输出 h i h_i hi。给定 h i + 1 t h_{i+1}^t hi+1t,训练目标为通过前面时刻的单词预测(输入单词及对应编码嵌入)当前时刻 t t t的单词: P ( w i + 1 t ∣ w i + 1 < t , h i ) ∝ exp ⁡ ( v w i + 1 t , h i + 1 t ) P(w_{i+1}^t|w_{i+1}^{<t}, h_i) \propto \exp (v_{w_{i+1}^t}, h_{i+1}^t) P(wi+1twi+1<t,hi)exp(vwi+1t,hi+1t),其中 v w i + 1 t v_{w_{i+1}^t} vwi+1t表示 w i + 1 t w_{i+1}^t wi+1t对应的词表矩阵的行向量。
  总结来说,模型会首先对输入句子进行编码,然后将该编码得到的隐藏状态输入到其相邻句子的解码GRU中,尝试生成与其相邻的句子。类似于word2vec中的通过中心词预测上下文,只是上下文窗口固定为1。
  最终训练的目标函数即为相邻句子解码的目标函数之和: ∑ t log ⁡ P ( w i + 1 t ∣ w i + 1 < t , h i ) + log ⁡ P ( w i − 1 t ∣ w i − 1 < t , h i ) \sum_t \log P(w_{i+1}^t|w_{i+1}^{<t}, h_i) + \log P(w_{i-1}^t|w_{i-1}^{<t}, h_i) tlogP(wi+1twi+1<t,hi)+logP(wi1twi1<t,hi)

3.2 词表拓展

  为了处理词表中未出现的单词,文章选择采用Word2Vec等较全的预训练单词嵌入进行补充。由于该单词嵌入和Skip-thought训练的单词嵌入有一定的偏差,所以文章先训练一个从Word2Vec到RNN(Skip-thought)的l2线性回归: f : V w 2 v → V r n n f: \mathcal{V}_{w2v}\to \mathcal{V}_{rnn} f:Vw2vVrnn。推理阶段,针对词表中未出现的单词 v v v,会首先查找其在Word2Vec下的嵌入 v w 2 v v_{w2v} vw2v,再通过学习好的映射 f f f预测其在文章训练的空间下的嵌入表达; v r n n ≈ f ( v w 2 v ) v_{rnn} \approx f(v_{w2v}) vrnnf(vw2v)

4. 文章亮点

  文章参考Skip-gram的思想,通过训练一个基于RNN的编码-解码模型,得到句子的预训练嵌入。实验证明,只需要在预训练的嵌入上增加一个简单的Logistic Regression,就可以持平针对下游任务精心设计的模型的表现,在当下(2015年)达到了SOTA水平。且文章通过t-SNE方法对训练的句向量进行了可视化表达,发现训练的句向量在多个数据集上呈现较为理想(按照标签组团)的分布,如下图所示。
论文笔记--Skip-Thought Vectors,论文阅读,论文阅读,rnn,skip-thought,word2vec,gru
  文章给出的Skip-thought向量可以较好的捕捉到句子特征,可供开发人员在此基础上进一步研究基于句向量的NLP任务。

5. 原文传送门

Skip-Thought Vectors

6. References

[1] 论文笔记–Efficient Estimation of Word Representations in Vector Space文章来源地址https://www.toymoban.com/news/detail-604610.html

到了这里,关于论文笔记--Skip-Thought Vectors的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 论文笔记--GloVe: Global Vectors for Word Representation

    标题:GloVe: Global Vectors for Word Representation 作者:Jeffrey Pennington, Richard Socher, Christopher D. Manning 日期:2014 期刊:EMNLP   文章提出了一种新的单词表示的训练方法:Glove。该方法结合了基于统计方法和基于上下文窗口方法的优势,在多个下游任务上超越了当下SOTA方法的表现。

    2024年02月15日
    浏览(33)
  • 论文阅读:Vary论文阅读笔记

    论文:Vary: Scaling up the Vision Vocabulary for Large Vision-Language Models Paper | Github | Demo 许久不精读论文了,内心一直想找个专门的时间来细细品读自己感兴趣的论文。现在想来,无异于是自己骗自己了,因为根本就不存在那个专门的时间。所以改变最好的时候就是现在。 因为自己一

    2024年01月19日
    浏览(46)
  • 论文阅读:Vary-toy论文阅读笔记

    论文:Small Language Model Meets with Reinforced Vision Vocabulary Paper | Github | Demo 说来也巧,之前在写论文阅读:Vary论文阅读笔记文章时,正好看到了Vary-toy刚刚发布。 这次,咱也是站在了时代的前沿,这不赶紧先睹为快。让我看看相比于Vary,Vary-toy做了哪些改进? 从整体结构来看,仍

    2024年01月25日
    浏览(60)
  • 文献阅读:Chain-of-Thought Prompting Elicits Reasoning in Large Language Models

    文献阅读:Chain-of-Thought Prompting Elicits Reasoning in Large Language Models 1. 文章简介 2. 具体方法 3. 实验结果 1. 数学推理 1. 实验设计 2. 实验结果 3. 消解实验 4. 鲁棒性考察 2. 常识推理 1. 实验设计 2. 实验结果 3. 符号推理 1. 实验设计 2. 实验结果 4. 结论 思考 文献链接:https://arxiv.or

    2024年02月10日
    浏览(45)
  • [论文阅读笔记18] DiffusionDet论文笔记与代码解读

    扩散模型近期在图像生成领域很火, 没想到很快就被用在了检测上. 打算对这篇论文做一个笔记. 论文地址: 论文 代码: 代码 首先介绍什么是扩散模型. 我们考虑生成任务, 即encoder-decoder形式的模型, encoder提取输入的抽象信息, 并尝试在decoder中恢复出来. 扩散模型就是这一类中的

    2023年04月08日
    浏览(67)
  • 论文阅读:Segment Anything之阅读笔记

    引言 论文:Segment Anything是Meta出的图像语义分割的算法。这个算法因其强大的zero-shot泛化能力让人惊艳,这不抽空拿来学习了一下。 该算法的代码写得很清楚、简洁和规范,读来让人赏心悦目。推荐去看源码,很有意思。 本篇文章,将以问答形式来解读阅读过程中遇到的困

    2024年02月13日
    浏览(37)
  • PointMixer论文阅读笔记

    MLP-mixer是最近很流行的一种网络结构,比起Transformer和CNN的节构笨重,MLP-mixer不仅节构简单,而且在图像识别方面表现优异。但是MLP-mixer在点云识别方面表现欠佳,PointMixer就是在保留了MLP-mixer优点的同时,还可以很好的处理点云问题。PointMixer可以很好的处理intra-set, inter-set

    2024年02月19日
    浏览(39)
  • 论文阅读笔记2:NetVLAD

    题目:NetVLAD: CNN Architecture for Weakly Supervised Place Recognition:、 团队: PSL Research University/Tokyo Institute of Technology 解决的问题: 我们解决了大规模视觉位置识别的问题,其任务是快速准确地识别给定查询照片的位置 创新点: 这篇文章主要有3个创新点: 1. 为场景识别任务构造出

    2024年02月11日
    浏览(44)
  • Retinexformer 论文阅读笔记

    清华大学、维尔兹堡大学和苏黎世联邦理工学院在ICCV2023的一篇transformer做暗图增强的工作,开源。 文章认为,Retinex的 I = R ⊙ L I=Rodot L I = R ⊙ L 假设干净的R和L,但实际上由于噪声,并不干净,所以分别为L和R添加干扰项,把公式改成如下: 本文采用先预测 L ‾ overline L

    2024年01月21日
    浏览(47)
  • 论文阅读笔记(一)

    发表年份: 2016 主要贡献: 提出了Multimodal Opinion-level Sentiment Intensity (MOSI) 数据集 提出了多模态情绪分析未来研究的基线 提出了一种新的多模态融合方式 在这些在线意见视频中研究情绪主要面临的挑战和解决方法: 挑战 解决方法 这些视频的不稳定性和快节奏性。演讲者经

    2023年04月09日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包