概率论的学习和整理21:用EXCEL来做假设检验(未完成草稿)

这篇具有很好参考价值的文章主要介绍了概率论的学习和整理21:用EXCEL来做假设检验(未完成草稿)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

1 EXCEL可以用来做假设检验

1.1 如何打开 数据分析 和 规划求解

1.2  EXCEL里关于正态分布的准备知识

2 基本的假设检验

2.1 最基本的假设检验,单边的Z检验

2.1 双样本F检验

2.1.1 例题

2.1.2 进行F检验之前需要满足一些假设条件

2.1.3 计算步骤

2.1.4 如何查表:下面这个图是 显著度a=0.05的F值表

 2.1.5 如何分析F检查的结果

2.2

2.5 方差分析(one-way ANOVA)


1 EXCEL可以用来做假设检验

  • EXCEL里可以做假设检验的
  • 但是需要打开加载项,数据分析才可以

概率论的学习和整理21:用EXCEL来做假设检验(未完成草稿),概率论,假设检验

1.1 如何打开 数据分析 和 规划求解

  • 开始-----选项-----加载项

  • 加载项里选择 数据分析 & 规划求解

概率论的学习和整理21:用EXCEL来做假设检验(未完成草稿),概率论,假设检验

1.2  EXCEL里关于正态分布的准备知识

  • 正态分布,
  • 正态分布曲线图,横轴是x,纵轴是概率p
  • 而normsinv是正态分布的反函数,可以根据概率求出 自变量的值
  • 函数 normsinv()
  • 函数 norm.s.inv()
  • 函数 norm.s.dist()
  • 作用是在EXCEL里配合使用  normsinv(rand()) 或 normsinv(rand()) 生成一些本身就符合正态分布的数据。
  • 如果有其他分布的反函数,理论上也可以生成符合其他分布的数据。

概率论的学习和整理21:用EXCEL来做假设检验(未完成草稿),概率论,假设检验

概率论的学习和整理21:用EXCEL来做假设检验(未完成草稿),概率论,假设检验

概率论的学习和整理21:用EXCEL来做假设检验(未完成草稿),概率论,假设检验

2 基本的假设检验

2.1 最基本的假设检验,单边的Z检验

2.2 双样本F检验

  • 最常用的应该就是用来于比较两个或多个组间的平均值是否有显著差异。
  • 原假设:一般就是认为符合,没差异等天真假设
  • F检验的原假设是所有组之间的差异是出于偶然。换句话说,原假设认为各组之间的平均值没有显著差异。
  • F检验的原理是,如果两个或多个组间的平均值或其他统计量之间存在显著差异,则组间方差(inter-group variance)会较大,而组内方差(intra-group variance)较小。
  • 因此F值=组间方差 / Σj 组内方差,如果F值越大,证明组间方差>>组内方差
  • P值 = 概率(F值 ≥ 实际F值 | 原假设) ,也就是p越小,证明 原假设--相信方差相同/期望相同的概率很小,不是观测造成,而是其他原因造成的。

​参考下面的文档

F检验结果应该怎么看? - 知乎F检验是一种统计检验,可用来比较两个或多个组间的平均值是否有显著差异。它是由Ronald Fisher发明的,因…https://www.zhihu.com/question/453744187/answer/2805042211

2.2.1 例题

概率论的学习和整理21:用EXCEL来做假设检验(未完成草稿),概率论,假设检验

2.2.2 进行F检验之前需要满足一些假设条件

  • 样本是随机取样的,也就是说,每个组中的观测值是独立的。
  • 样本是来自正态分布的总体。
  • 每个组的样本容量应该相等

2.2.3 计算步骤

  • 需要计算出三组数据的平均值,
  • 平均值等于所有数加起来的和除以数据个数。
  • 然后计算出组内方差和组间方差。    

α (alpha)是显著度           

组内方差(intra-group variance)              

  • 使用样本方差公式,组内方差等于每个数据与其所在组的平均值的差的平方和除以(组内数据个数-1)。
  1. 因为每种数据的样本容量要相同,i相同
  2. u1,u2  ... ... 是每组平均数
  3. 平均数就是最简单得算术平均数,u1=(x1+x2+....+xi)/i
  4. 如第1组组内方差,δ^2=((u1-x1)^2+(u1-x2)^2+....++(u1-xi)^2)/(i-1)
  5. 如第2组组内方差,δ^2=((u2-x1)^2+(u2-x2)^2+....++(u2-xi)^2)/(i-1)

组间方差(inter-group variance)

  • 使用样本方差公式,组间方差等于每个数据与其所在组的平均值的差的平方和除以(组的数量个数-1)。
  1. U是多组数据之和=全部数据 的平均值
  2. 假设有 j 组数组
  3. 组间方差,δ^2=((U-u1)^2+(U-u2)^2+....++(U-uj)^2)/(j-1)

F值

  • F= 组间方差除以组内方差的和。
  • F= 组间方差 / Σj 组内方差
  • 然后查表,k1组间自由度等于组数减1,k2组内自由度等于每组个数减去组数。
  • 下面的例子里,k1=2-1,k2=30-2=28
  • 如果F值打羽查表得到的F值,说明差异显著,否则说明差异不显著。

P值的计算公式如下:

  • P值 = 概率(F值 ≥ 实际F值 | 原假设)
  • 其中,原假设是所有组之间的差异是出于偶然。通过计算,P值可以得到一个概率值,表示在原假设下,观察到如此极端的结果(即F值大于或等于实际观察到的F值)的概率。
  • 通常情况下,P值小于0.05被认为是有统计学显著性的,即我们有95%的信心认为样本数据中差异的存在不是偶然造成的,而是由于实验因素或其他因素导致的。

2.2.4 如何查表:下面这个图是 显著度a=0.05的F值表 : F0.05(1,28) =4.2

  • k1,组间自由度 =j-1 =2-1   =1
  • k2,组内自由度 =i-j  =30-2 =28
  • 查表得出F值是4.2
  • 也就是 F0.05(1,28) =4.2

概率论的学习和整理21:用EXCEL来做假设检验(未完成草稿),概率论,假设检验

概率论的学习和整理21:用EXCEL来做假设检验(未完成草稿),概率论,假设检验

 ​​​​​概率论的学习和整理21:用EXCEL来做假设检验(未完成草稿),概率论,假设检验

 2.2.5 指标意义

  • 在F检验中,p值是指在进行方差分析时,对于给定的数据集,假设所有组之间的差异是出于偶然,计算得到这个假设的的概率。
  • 具体来说,p值越小,就说明数据集的差异越显著,越有理由拒绝原假设(即所有组之间的差异是出于偶然),而接受备择假设(即存在显著差异)。换句话说,当p值小于0.05时,我们有95%的信心认为样本数据中差异的存在不是偶然造成的,而是由于实验因素或其他因素导致的。
  • 需要注意的是,p值小于0.05只表明差异是显著的存在的,但并不能说明这种差异是否有实际意义或重要性。因此,在进行统计推断时,除了p值外,还需要考虑其他因素,例如效应量的大小和样本大小等,以更全面地评估数据的结果。
  • F值表示整个拟合方程的显著性,F越大,表示方程越显著,拟合程度也就越好。
  • 另外在统计解释时一般不看F值,只需要看P值就可以了,但是在写论文时还是要将F值写出来,并把P值放在后面用括号括起来

 2.2.6 如何分析F检查的结果

 结果如下

  • 因为这是F-检验的双样本方差分析
  • p=0.48> 0.05 显著度,说明两者方差无明显差异,即方差齐性
  • 接着 选用 分析工具 中 的 t 检验 : 双 样本等方差假设

 概率论的学习和整理21:用EXCEL来做假设检验(未完成草稿),概率论,假设检验

2.3 反向验证结果

因为数据是我用 normsinv() 生造出来的,所以一定是符合正态分布的,所以我打算用这些数据来反向验证F检验的合理性,可靠性。

概率论的学习和整理21:用EXCEL来做假设检验(未完成草稿),概率论,假设检验

 概率论的学习和整理21:用EXCEL来做假设检验(未完成草稿),概率论,假设检验

2.3.1  生造2个有偏移量的正态数据

  • 两列数据
  • 第1列是标准正态数据
  • 第2列是标准正态数据+0.5
  • p=0.004<0.05 ,说明方差是显著有差异的

概率论的学习和整理21:用EXCEL来做假设检验(未完成草稿),概率论,假设检验

 概率论的学习和整理21:用EXCEL来做假设检验(未完成草稿),概率论,假设检验

概率论的学习和整理21:用EXCEL来做假设检验(未完成草稿),概率论,假设检验文章来源地址https://www.toymoban.com/news/detail-605176.html

2.3.2 生造正态分布和其他分布的数据对比

2.2

2.5 方差分析(one-way ANOVA)

到了这里,关于概率论的学习和整理21:用EXCEL来做假设检验(未完成草稿)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 概率论的学习和整理9:超几何分布 (未完成!!!)

    目录 1超几何分布 Hypergeometric distribution          1.1 超几何分布的定义 1.2 为什么叫超几何分布  1.3 超几何分布的公式  (2种公式) 1.3.1 超几何分布的公式1 (总体型公式) 1.3.2 超几何分布的公式2 (拆分型公式) 1.4 超几何分布的分布图 2 超几何分布的期望和方差 3 超几

    2024年02月13日
    浏览(36)
  • 概率论的学习和整理13--方差和协方差(未完成)

    一组数据的方差,没有加权信息,一般认为是 等概率的,按个数进行平均算方差 随机变量的方差,因为有概率作为权重,需要按概率算方差 常见说法,说到方差,一般把期望和方差成对出现一起说 什么是期望? 期望是一种平均值,出自赌博,是用概率做权重,随机变量的

    2024年02月03日
    浏览(36)
  • 概率论与数理统计:第七章:参数估计 第八章:假设检验

    1.矩估计 p i ( θ ) p_i(θ) p i ​ ( θ ) 、 f ( x i , θ ) f(x_i,θ) f ( x i ​ , θ ) ,用矩估计法来估计未知参数θ { X ˉ = E ( X ) 1 n ∑ i = 1 n X i 2 = E ( X 2 ) left{begin{aligned} bar{X} = E(X) \\\\ dfrac{1}{n}sumlimits_{i=1}^nX_i^2 = E(X^2) end{aligned}right. ⎩ ⎨ ⎧ ​ X ˉ = n 1 ​ i = 1 ∑ n ​ X i 2 ​ = ​ E

    2024年02月11日
    浏览(45)
  • 概率论和随机过程的学习和整理20:条件概率我知道,但什么是条件期望?可用来解决递归问题

    目录 1 目标问题: 什么是条件期望? 条件期望有什么用? 2 条件期望,全期望公式 3 条件期望,全期望公式 和 条件概率,全概率公式的区别和联系 3.1 公式如下 3.2 区别和联系 3.3 概率和随机过程 4 有什么用:---可以解决很多递归的问题 4.1 使用前有个前提:界定清楚你要求

    2024年02月15日
    浏览(44)
  • 概率论的学习和整理15: 超几何分布,二项分布,泊松分布是如何趋近收敛的?

    目录 1 问题: 2 结论 3 实验1  4 实验2  5 实验3  6 实验4 5 各种规律总结 5.1   1  5.2  2 5.3  3 5.4 4 6 超几何分布,二项分布,泊松分布,三者用EXCEL模拟 6.1 简单的扩展到泊松分布 6.2  比较整体的动态过程,增加实验次数时 从一个简单模型说开去 比如,有10个球,其中有x个

    2024年02月16日
    浏览(38)
  • 概率论的学习和整理11:伯努利试验对应分布:0-1分支, 二项分布 (未修改完成!!!)

    目录 1 伯努利试验 1.1 什么是伯努利试验 1.2 伯努利试验相关的3种分布 2 关于0-1分布 (也称为伯努利分布   ab分布  两点分布等) 2.1 0-1分布的基本概率和公式 2.2 0-1分布的概率分布图,pdf 和 cdf 2.3 0-1分布的期望和方差                  3  几何分布 3.1 什么是几何分布 4 二

    2024年02月13日
    浏览(41)
  • 概率论和随机过程的学习和整理--番外16,N合1的合成问题的求平均个数,次数,阶数

    目录 1 问题 2 用条件期望,求合成的次数 2.1 思路1 2.2 思路2 3  用条件期望,求合成的个数 3.1 令X表示用材料1往上合成时,合成材料2的个数 3.2 令Y表示用材料1往上合成时,合成材料3的个数 4 用条件期望,求合成的材料的阶数 5 比较计算次数,个数,合成东西的阶数 假设有

    2024年02月15日
    浏览(39)
  • 概率论学习笔记全网最全!!!!

    第01回:一些基本概念 1. 随机试验 满足下列条件的试验称为随机试验. 可以在相同的条件下重复地进行; 每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果; 进行一次试验之前不能确定哪一个结果会出现. 2. 样本空间 ​ 我们研究随机现象的方法其实就是利用

    2024年02月03日
    浏览(55)
  • 《概率论与数理统计》学习笔记

    重温《概率论与数理统计》进行查漏补缺,并对其中的概念公式等内容进行总结,以便日后回顾。 目录 第一章 概率论的基本概念 第二章 随机变量及其分布 第三章  多维随机变量及其分布 第四章  随机变量的数字特征 第五章  大数定律及中心极限定理 第六章  样本及抽样

    2024年02月03日
    浏览(40)
  • 深度学习-必备的数学知识-概率论2

    概率论 在上一篇文章中,我带大家初略的了解了概率论是什么。这篇文章中我将为大家讲解概率论中的随机变量和概率分布。 随机变量 在概率论中,随机变量(random variable)是一个可以随机地取不同值的变量。一个随机变量是对可能的状态的描述,它的取值范围是事件的所

    2024年02月03日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包