【如何训练一个中英翻译模型】LSTM机器翻译模型部署之onnx(python)(四)

这篇具有很好参考价值的文章主要介绍了【如何训练一个中英翻译模型】LSTM机器翻译模型部署之onnx(python)(四)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

系列文章
【如何训练一个中英翻译模型】LSTM机器翻译seq2seq字符编码(一)

【如何训练一个中英翻译模型】LSTM机器翻译模型训练与保存(二)

【如何训练一个中英翻译模型】LSTM机器翻译模型部署(三)

【如何训练一个中英翻译模型】LSTM机器翻译模型部署之onnx(python)(四)

一、事前准备

先把要用到的几个工具说一下:

ncnn:https://github.com/Tencent/ncnn
tf2onnx:https://github.com/onnx/tensorflow-onnx
netron:https://netron.app
onnxsim:https://github.com/daquexian/onnx-simplifier
onnxruntime:https://github.com/microsoft/onnxruntime
以上工具的安装与使用后面会抽空补充一下,在这里先记录下,以免忘记了

有了工具之后,我们还需要以下几个文件:
【如何训练一个中英翻译模型】LSTM机器翻译模型部署之onnx(python)(四),如何训练一个中英翻译模型,lstm,机器翻译,人工智能
这几个文件可以在前面的文章【如何训练一个中译英翻译器】LSTM机器翻译模型训练与保存(二)训练一个模型并保存模型得到,最快的方式就是运行文章最后的kaggle notebook,直接得到文件,然后下载下来即可

二、.h5模型保存为TFSaveModel格式样例

要将tf模型转为onnx模型,我们需要先将格式为.h5的tf模型保存为saved_model的格式,先给出样例:

import tensorflow as tf
from keras.models import load_model

# 加载Keras模型
model = load_model('encoder_model.h5')

# 转换为SavedModel类型
tf.saved_model.save(model, 'TFSaveModel')

三、模型转换

1、encoder_model的转换

1).h5模型保存为TFSaveModel

import tensorflow as tf
from keras.models import load_model

# 加载Keras模型
model = load_model('encoder_model.h5')

# 转换为SavedModel类型
tf.saved_model.save(model, 'TFSaveModel')

2)TFSaveModel格式模型保存为onnx模型

python3 -m tf2onnx.convert --saved-model TFSaveModel --output onnxModel/encoder_model.onnx

3)onnx模型简化

打开https://netron.app/来看下网络结构,主要是先看输入部分的维度(网络结构后面会细讲)
可以看到输入维度:
input_1:[unk__64、unk__65、62]
我们需要将 unk__64、unk__65 这两个改为具体数值,否则在导出ncnn模型时会报一些op不支持的错误,那么问题来了,要怎么改,我也不知道啊!!!
哈哈哈,开完笑的,都写出来了,怎么会不知道,请听我慢慢说来。
【如何训练一个中英翻译模型】LSTM机器翻译模型部署之onnx(python)(四),如何训练一个中英翻译模型,lstm,机器翻译,人工智能[unk__64、unk__65、62]
其实数据第一个unk__64是batch,第二个unk__65是输入句子的最大长度,第三个62是字符总数量,我们在推理时,batch size一般为1,所以这个input_1的shape就是[1,max_encoder_seq_length, num_encoder_tokens](num_encoder_tokens模型已经帮我们填好了)
max_encoder_seq_length, num_encoder_tokens 这两个参数可以在训练的时候获取到了,拿到这个input shape 之后,对onnx模型进行simplify,我训练出来的模型时得到的shape是[1,16,62],因此执行以下命令:

python3 -m onnxsim onnxModel/encoder_model.onnx onnxModel/encoder_model-sim.onnx --overwrite-input-shape 1,16,62

可得到简化后的onnx模型
【如何训练一个中英翻译模型】LSTM机器翻译模型部署之onnx(python)(四),如何训练一个中英翻译模型,lstm,机器翻译,人工智能
这个时候,我们再用https://netron.app打开encoder_model-sim.onnx,可以看到encoder模型的输出了,有两个输出,均为[1,256]的维度
【如何训练一个中英翻译模型】LSTM机器翻译模型部署之onnx(python)(四),如何训练一个中英翻译模型,lstm,机器翻译,人工智能

2、decoder_model的转换

然后我们需要对decoder_model.h5也进行转换,

1).h5模型保存为TFSaveModel

import tensorflow as tf
from keras.models import load_model

# 加载Keras模型
model = load_model('decoder_model.h5')

# 转换为SavedModel类型
tf.saved_model.save(model, 'TFSaveModel')

2)TFSaveModel格式模型保存为onnx模型

python3 -m tf2onnx.convert --saved-model TFSaveModel --output onnxModel/decoder_model.onnx

3)onnx模型简化

同样打开模型来看,能看到一共有三个输入:
input_2:[unk__55,unk__56,849]
input_3:[unk__57,256]
input_4:[unk__58,256]
其中,input_3、input_4为encoder的输出,因此可以得到这两个输入维度均为[1,256]
那么,input_2的维度是多少,我们接着往下看。
【如何训练一个中英翻译模型】LSTM机器翻译模型部署之onnx(python)(四),如何训练一个中英翻译模型,lstm,机器翻译,人工智能
我们想一想,解码器除了接受编码器的数据,还有什么数据没给它,没有错,就是target_characters的特征,对于英译中而言就是中文的字符,要解码器解出中文,肯定要把中文数据给它,要不然你让解码器去解空气啊,实际上这个 input_2的维度就是

target_seq = np.zeros((1, 1, num_decoder_tokens))

num_decoder_tokens同样可以在训练的时候获取到(至于不知道怎么来的,可以看这个系列文章的第一、二篇),我这边得到的num_decoder_tokens是849,当然实际上这个模型的 input_2:[unk__55,unk__56,849]已经给了num_decoder_tokens,我们只需要把unk__55,unk__56都改为1就可以了,即[1,1,849],那么对onnx进行simplify

python3 -m onnxsim onnxModel/decoder_model.onnx onnxModel/decoder_model-sim.onnx --overwrite-input-shape input_2:1,1,849 input_3:1,256 input_4:1,256

成功完成simplify可得到:
【如何训练一个中英翻译模型】LSTM机器翻译模型部署之onnx(python)(四),如何训练一个中英翻译模型,lstm,机器翻译,人工智能

4、onnx模型推理

到最后一步了,导出onnx模型后,要试试这个模型怎么样,所以拿过来推理一波,推理代码是从前面文章【如何训练一个中译英翻译器】LSTM机器翻译模型训练与保存(二)的第小6节模型加载与推理里面的代码改过来的,感兴趣的小伙伴可以去看看两者的差异

1)加载模型数据

模型数据的加载主要是加载input_words.txt、target_words.txt、config.json、encoder_model-sim.onnx、decoder_model-sim.onnx 这几个文件

input_words.txt、target_words.txt:为输入输出字符表
config.json:为最长输入长度与最长输出长度
encoder_model-sim.onnx、decoder_model-sim.onnx :为导出的onnx模型

import onnxruntime
import numpy as np
# 加载字符
# 从 input_words.txt 文件中读取字符串
with open('config/input_words.txt', 'r') as f:
    input_words = f.readlines()
    input_characters = [line.rstrip('\n') for line in input_words]

# 从 target_words.txt 文件中读取字符串
with open('config/target_words.txt', 'r', newline='') as f:
    target_words = [line.strip() for line in f.readlines()]
    target_characters = [char.replace('\\t', '\t').replace('\\n', '\n') for char in target_words]

#字符处理,以方便进行编码
input_token_index = dict([(char, i) for i, char in enumerate(input_characters)])
target_token_index = dict([(char, i) for i, char in enumerate(target_characters)])

# something readable.
reverse_input_char_index = dict(
    (i, char) for char, i in input_token_index.items())
reverse_target_char_index = dict(
    (i, char) for char, i in target_token_index.items())
num_encoder_tokens = len(input_characters) # 英文字符数量
num_decoder_tokens = len(target_characters) # 中文文字数量

import json
with open('config/config.json', 'r') as file:
    loaded_data = json.load(file)

# 从加载的数据中获取max_encoder_seq_length和max_decoder_seq_length的值
max_encoder_seq_length = loaded_data["max_encoder_seq_length"]
max_decoder_seq_length = loaded_data["max_decoder_seq_length"]



encoderSess = onnxruntime.InferenceSession('onnxModel/encoder_model-sim.onnx')
decoderSess = onnxruntime.InferenceSession('onnxModel/decoder_model-sim.onnx')

2)查看模型输入输出信息

查看输入输出信息主要是为了获取输入名称,在进行模型输入的时候,要先知道模型有哪些输入,维度是多少,才能输入正确的数据


print("----------------- 输入部分 -----------------")
input_tensors = encoderSess.get_inputs()  # 该 API 会返回列表
for input_tensor in input_tensors:         # 因为可能有多个输入,所以为列表
    
    input_info = {
        "name" : input_tensor.name,
        "type" : input_tensor.type,
        "shape": input_tensor.shape,
    }
    print(input_info)

print("----------------- 输出部分 -----------------")
output_tensors = encoderSess.get_outputs()  # 该 API 会返回列表
for output_tensor in output_tensors:         # 因为可能有多个输出,所以为列表
    
    output_info = {
        "name" : output_tensor.name,
        "type" : output_tensor.type,
        "shape": output_tensor.shape,
    }
    print(output_info)



print("----------------- 输入部分 -----------------")
input_tensors = decoderSess.get_inputs()  # 该 API 会返回列表
for input_tensor in input_tensors:         # 因为可能有多个输入,所以为列表
    
    input_info = {
        "name" : input_tensor.name,
        "type" : input_tensor.type,
        "shape": input_tensor.shape,
    }
    print(input_info)

print("----------------- 输出部分 -----------------")
output_tensors = decoderSess.get_outputs()  # 该 API 会返回列表
for output_tensor in output_tensors:         # 因为可能有多个输出,所以为列表
    
    output_info = {
        "name" : output_tensor.name,
        "type" : output_tensor.type,
        "shape": output_tensor.shape,
    }
    print(output_info)

3)模型推理搭建


def decode_sequence(input_seq):
    # Encode the input as state vectors.
    states_value = encoderSess.run(None, {'input_1': input_seq})
    # Generate empty target sequence of length 1.
    target_seq = np.zeros((1, 1, num_decoder_tokens), dtype=np.float32)
    # Populate the first character of target sequence with the start character.
    target_seq[0, 0, target_token_index['\t']] = 1.
    # this target_seq you can treat as initial state
    # Sampling loop for a batch of sequences
    # (to simplify, here we assume a batch of size 1).
    stop_condition = False
    decoded_sentence = ''
    while not stop_condition:
        output_tokens, h, c = decoderSess.run(None, {'input_2': target_seq, 'input_3': states_value[0], 'input_4': states_value[1]})
        # Sample a token
        # argmax: Returns the indices of the maximum values along an axis
        # just like find the most possible char
        sampled_token_index = np.argmax(output_tokens[0, -1, :])
        # find char using index
        sampled_char = reverse_target_char_index[sampled_token_index]
        # and append sentence
        decoded_sentence += sampled_char
        # Exit condition: either hit max length
        # or find stop character.
        if (sampled_char == '\n' or len(decoded_sentence) > max_decoder_seq_length):
            stop_condition = True
        # Update the target sequence (of length 1).
        # append then ?
        # creating another new target_seq
        # and this time assume sampled_token_index to 1.0
        target_seq = np.zeros((1, 1, num_decoder_tokens), dtype=np.float32)
        target_seq[0, 0, sampled_token_index] = 1.
        # Update states
        # update states, frome the front parts
        states_value = [h, c]
    return decoded_sentence


input_text = "Call me."
encoder_input_data = np.zeros(
    (1,max_encoder_seq_length, num_encoder_tokens),
    dtype='float32')
for t, char in enumerate(input_text):
    # 3D vector only z-index has char its value equals 1.0
    encoder_input_data[0,t, input_token_index[char]] = 1.

4)模型推理

input_seq = encoder_input_data
decoded_sentence = decode_sequence(input_seq)
print('-')
print('Input sentence:', input_text)
print('Decoded sentence:', decoded_sentence)

5)完整代码

import onnxruntime
import numpy as np
# 加载字符
# 从 input_words.txt 文件中读取字符串
with open('config/input_words.txt', 'r') as f:
    input_words = f.readlines()
    input_characters = [line.rstrip('\n') for line in input_words]

# 从 target_words.txt 文件中读取字符串
with open('config/target_words.txt', 'r', newline='') as f:
    target_words = [line.strip() for line in f.readlines()]
    target_characters = [char.replace('\\t', '\t').replace('\\n', '\n') for char in target_words]

#字符处理,以方便进行编码
input_token_index = dict([(char, i) for i, char in enumerate(input_characters)])
target_token_index = dict([(char, i) for i, char in enumerate(target_characters)])

# something readable.
reverse_input_char_index = dict(
    (i, char) for char, i in input_token_index.items())
reverse_target_char_index = dict(
    (i, char) for char, i in target_token_index.items())
num_encoder_tokens = len(input_characters) # 英文字符数量
num_decoder_tokens = len(target_characters) # 中文文字数量

import json
with open('config/config.json', 'r') as file:
    loaded_data = json.load(file)

# 从加载的数据中获取max_encoder_seq_length和max_decoder_seq_length的值
max_encoder_seq_length = loaded_data["max_encoder_seq_length"]
max_decoder_seq_length = loaded_data["max_decoder_seq_length"]



encoderSess = onnxruntime.InferenceSession('onnxModel/encoder_model-sim.onnx')
decoderSess = onnxruntime.InferenceSession('onnxModel/decoder_model-sim.onnx')


print("----------------- 输入部分 -----------------")
input_tensors = encoderSess.get_inputs()  # 该 API 会返回列表
for input_tensor in input_tensors:         # 因为可能有多个输入,所以为列表
    
    input_info = {
        "name" : input_tensor.name,
        "type" : input_tensor.type,
        "shape": input_tensor.shape,
    }
    print(input_info)

print("----------------- 输出部分 -----------------")
output_tensors = encoderSess.get_outputs()  # 该 API 会返回列表
for output_tensor in output_tensors:         # 因为可能有多个输出,所以为列表
    
    output_info = {
        "name" : output_tensor.name,
        "type" : output_tensor.type,
        "shape": output_tensor.shape,
    }
    print(output_info)



print("----------------- 输入部分 -----------------")
input_tensors = decoderSess.get_inputs()  # 该 API 会返回列表
for input_tensor in input_tensors:         # 因为可能有多个输入,所以为列表
    
    input_info = {
        "name" : input_tensor.name,
        "type" : input_tensor.type,
        "shape": input_tensor.shape,
    }
    print(input_info)

print("----------------- 输出部分 -----------------")
output_tensors = decoderSess.get_outputs()  # 该 API 会返回列表
for output_tensor in output_tensors:         # 因为可能有多个输出,所以为列表
    
    output_info = {
        "name" : output_tensor.name,
        "type" : output_tensor.type,
        "shape": output_tensor.shape,
    }
    print(output_info)



def decode_sequence(input_seq):
    # Encode the input as state vectors.
    states_value = encoderSess.run(None, {'input_1': input_seq})
    # Generate empty target sequence of length 1.
    target_seq = np.zeros((1, 1, num_decoder_tokens), dtype=np.float32)
    # Populate the first character of target sequence with the start character.
    target_seq[0, 0, target_token_index['\t']] = 1.
    # this target_seq you can treat as initial state
    # Sampling loop for a batch of sequences
    # (to simplify, here we assume a batch of size 1).
    stop_condition = False
    decoded_sentence = ''
    while not stop_condition:
        output_tokens, h, c = decoderSess.run(None, {'input_2': target_seq, 'input_3': states_value[0], 'input_4': states_value[1]})
        # Sample a token
        # argmax: Returns the indices of the maximum values along an axis
        # just like find the most possible char
        sampled_token_index = np.argmax(output_tokens[0, -1, :])
        # find char using index
        sampled_char = reverse_target_char_index[sampled_token_index]
        # and append sentence
        decoded_sentence += sampled_char
        # Exit condition: either hit max length
        # or find stop character.
        if (sampled_char == '\n' or len(decoded_sentence) > max_decoder_seq_length):
            stop_condition = True
        # Update the target sequence (of length 1).
        # append then ?
        # creating another new target_seq
        # and this time assume sampled_token_index to 1.0
        target_seq = np.zeros((1, 1, num_decoder_tokens), dtype=np.float32)
        target_seq[0, 0, sampled_token_index] = 1.
        # Update states
        # update states, frome the front parts
        states_value = [h, c]
    return decoded_sentence


input_text = "Call me."
encoder_input_data = np.zeros(
    (1,max_encoder_seq_length, num_encoder_tokens),
    dtype='float32')
for t, char in enumerate(input_text):
    # 3D vector only z-index has char its value equals 1.0
    encoder_input_data[0,t, input_token_index[char]] = 1.


input_seq = encoder_input_data
decoded_sentence = decode_sequence(input_seq)
print('-')
print('Input sentence:', input_text)
print('Decoded sentence:', decoded_sentence)


可以看到运行结果:
【如何训练一个中英翻译模型】LSTM机器翻译模型部署之onnx(python)(四),如何训练一个中英翻译模型,lstm,机器翻译,人工智能
代码比较简单,然后也有加一些注释,就不再细讲了,要不然就显得有点啰嗦,有疑问的可以留言,欢迎交流!文章来源地址https://www.toymoban.com/news/detail-605443.html

到了这里,关于【如何训练一个中英翻译模型】LSTM机器翻译模型部署之onnx(python)(四)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于transformer的Seq2Seq机器翻译模型训练、预测教程

    机器翻译(Machine Translation, MT)是一类将某种语言(源语言,source language)的句子 x x x 翻译成另一种语言(目标语言,target language)的句子 y y y 的任务。机器翻译的相关研究早在上世纪50年代美苏冷战时期就开始了,当时的机器翻译系统是基于规则的,利用两种语言的单词、

    2024年02月03日
    浏览(39)
  • 【GPT】文本生成任务(生成摘要、文本纠错、机器翻译等的模型微调)

    NLG:自然语言生成任务,很多NLP任务可以被描述为NLG任务,如经典的T5模型(text to text transfer transformer模型)就是NLG模型,如文本纠错任务,输出正确的文本描述、智能问答根据一定背景进行推理,然后回答。 主要分为三种: 抽取式摘要:从原文档中提取现成的句子作为摘要

    2023年04月26日
    浏览(54)
  • 【2022吴恩达机器学习课程视频翻译笔记】3.2线性回归模型-part-2

    Let’s look in this video at the process of how supervised learning works. Supervised learning algorithm will input a dataset and then what exactly does it do and what does it output? Let’s find out in this video. Recall that a training set in supervised learning includes both the input features, such as the size of the house and also the output targets,

    2024年02月12日
    浏览(38)
  • OJ# 376 机器翻译

    题目描述 ​ 小李的电脑上安装了一个机器翻译软件,他经常用这个软件来翻译英语文章。 ​这个翻译软件的原理很简单,它只是从头到尾,依次将每个英文单词用对应的中文含义来替换。对于每个英文单词,软件会先在内存中查找这个单词的中文含义, 如果内存中有,软件

    2024年02月11日
    浏览(246)
  • NLP——Translation 机器翻译

    基于统计的机器翻译任务通常通过翻译模型(Translation Model)和语言模型(Language Model)的结合来学习更强大的翻译模型。这种结合被称为统计机器翻译(SMT)。 翻译模型(Translation Model):翻译模型主要关注如何将源语言句子翻译成目标语言句子。它使用双语语料库进行训练

    2024年02月09日
    浏览(93)
  • 机器学习&&深度学习——机器翻译(序列生成策略)

    👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er 🌌上期文章:机器学习深度学习——seq2seq实现机器翻译(详细实现与原理推导) 📚订阅专栏:机器学习深度学习 希望文章对你们有所帮助 上一节已经实现了机器翻译的模型训练和预测,逐个预测输出序列, 直

    2024年02月12日
    浏览(42)
  • 几个nlp的小任务(机器翻译)

    2024年02月10日
    浏览(39)
  • 如何训练一个模型

    在自动驾驶中,视觉感知模型负责从摄像头捕获的图像中提取关键信息,如车道线、交通标志、其他车辆、行人等。训练视觉感知模型通常基于深度学习技术,尤其是卷积神经网络(CNN)。以下是训练视觉感知模型的一般步骤: 数据收集 :首先需要收集大量的驾驶场景图像

    2024年02月10日
    浏览(56)
  • 什么是自然语言处理的机器翻译?

    机器翻译(Machine Translation,MT)是一种自然语言处理技术,旨在将一种语言的文本自动翻译成另一种语言。机器翻译是自然语言处理领域的重要应用之一,它可以帮助人们在跨语言交流、文档翻译和信息检索等方面更加便捷和高效。本文将详细介绍自然语言处理的机器翻译。

    2024年02月05日
    浏览(41)
  • 【动手学深度学习】--机器翻译与数据集

    学习视频:机器翻译数据集【动手学深度学习v2】 官方笔记:机器翻译与数据集 机器翻译 (machine translation)指的是 将序列从一种语言自动翻译成另一种语言。 事实上,这个研究领域可以追溯到数字计算机发明后不久的20世纪40年代, 特别是在第二次世界大战中使用计算机破

    2024年02月09日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包