关于单片机的时钟浅谈及STM32F103/F030单片机的内外时钟切换问题

这篇具有很好参考价值的文章主要介绍了关于单片机的时钟浅谈及STM32F103/F030单片机的内外时钟切换问题。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

绪论

本文主要讲解单片机的时钟系统的相关知识,并进行超频测试,同时介绍如何在STM32F0单片机上进行内外时钟的切换,在不使用外部晶振或者外部晶振不启动时自动切换内部时钟的方法。

一、杂谈

问题来源于群里的一次问答:
stm32f030 系统时钟,STM32F0,单片机,stm32,系统时钟切换
诚然,当使用固件库时,把外部晶振摘掉,系统确实会自动切换到内部时钟,但是只会以8M的默认值运行,显然这是十分不可行的,8M的速度直接让我们的STM32病入膏肓,今天的任务就是让STM32失去外挂(晶振)时,依旧可以激情澎湃。
时钟详解这里不过多介绍,自己也没有别人介绍的好。此帖旨在解决现实问题。
此处插播广告:
群友问过这种问题,外部接8M晶振和16M晶振有啥区别?

以我微薄的经验来看,这两个在用的时候差别不大,如果使用ST的固件库(以STM32F103为例),使用8M的晶振会更方便,不用改任何代码,时钟就是72M的全速运行状态。如果用16M晶振,则需要修改代码:
在stm32f10x.h中修改宏定义
HSE_VALUE ((uint32_t)8000000)为HSE_VALUE ((uint32_t)16000000)。
stm32f030 系统时钟,STM32F0,单片机,stm32,系统时钟切换
之后进入system_stm32f10x.c,将
RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC_HSE | RCC_CFGR_PLLMULL9);
改为
RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC_HSE | RCC_CFGR_PLLXTPRE_HSE_Div2 | RCC_CFGR_PLLMULL9);
此处是将输入时钟二分频为8M,再进行9倍频到72M,和使用了8M没区别。如果不进行该二分频操作,时钟还是有的,但是会以16M为基准进行9倍频到144M,此时单片机以超频模式运行,也是可以运行的。但是时钟的精准性不能得到保证。
stm32f030 系统时钟,STM32F0,单片机,stm32,系统时钟切换
系统的时钟可以通过添加代码在debug模式下显示:

RCC_ClocksTypeDef ClockInfo;
RCC_GetClocksFreq(&ClockInfo);

stm32f030 系统时钟,STM32F0,单片机,stm32,系统时钟切换
通过debug模式下观察ClockInfo的值便可知道此时系统时钟速度:
stm32f030 系统时钟,STM32F0,单片机,stm32,系统时钟切换
这里提一下,在使用外部晶振的情况下,ST即使是超频,依旧发挥稳定,不得不夸一下ST的质量。
此时我将我的开发板以8M的基准倍频16倍,得到128M的主频,使用定时器定时10us,示波器测试无误差。串口通信无误。
stm32f030 系统时钟,STM32F0,单片机,stm32,系统时钟切换
stm32f030 系统时钟,STM32F0,单片机,stm32,系统时钟切换
stm32f030 系统时钟,STM32F0,单片机,stm32,系统时钟切换
stm32f030 系统时钟,STM32F0,单片机,stm32,系统时钟切换
以72M的主频跑128依旧稳定,赞一个,因为我的外部晶振只有8M最大只能倍频到128,如果使用外部16M,不知继续倍频可以到多少。不过性能还是很好的。

预留测试GD32的效果:
写贴时将GD的GD32E230翻出来进行了同样的测试,因为GD的倍频器倍数较高,我已经倍频到144M(标准72M),测试定时器依旧稳定。
stm32f030 系统时钟,STM32F0,单片机,stm32,系统时钟切换

广告很长,你忍一下。
上半场结束,下半场继续:
此处歪解一下时钟的问题,之前有群友很疑惑单片机的低功耗和时钟的关系,疑惑高速的时钟会不会增加MCU的功耗,为啥低功耗要降低时钟速度。这里讲解一下:
可以用用单位时间内执行的指令来看,高速时钟在单位时间内使系统跑了更多的指令,而低速时钟单位时间内跑的少,而单片机是直线结构,内核是不会休息的,功耗就看执行的指令多少。而单片机的低功耗就是降低时钟,让单片机跑慢点。就像人一样,低功耗相当于你不跑了,原地休息,但是你的心跳不会停止,你还是得消耗能量,即使再少还得消耗。
就像人一样,时钟就相当于心跳,只要还活着就得消耗能量,你要想跑得快,心脏就得跳得快,跳得越快能量消耗越高,即使你去睡觉,心跳只要不停止,你还得消耗能量,如果心跳没了,整个人就没了,MCU也就宕机了。所以在处理低功耗时最先解决的就是时钟频率,只有降低了时钟的频率,才能真正降低功耗
。关于单片机进入低功耗和唤醒,以及降低整体运行功耗我看能不能在下文讲解,近期刚好做了一个低功耗的项目,这里留悬念吧。

二、内外时钟切换

广告结束,正文开始,不好意思,有点喧宾夺主了哈。
回到主题,为了解决时钟切换的问题,才有了这个帖子,上文全属歪楼,为最近开发时的经验总结。
我们在使用STM32103的固件库时,时钟配置在system_stm32f10x.c中,但是只是对外部晶振做了初始化,而对于内部时钟并没有添加代码,如果你的MCU没有外部晶振,当系统运行时是先启动内部时钟,然后会检测外部晶振,如果没有检测到晶振,系统便以内部的8M继续运行,这是不合理的。
stm32f030 系统时钟,STM32F0,单片机,stm32,系统时钟切换
这里可以看到,如果外部启动失败,会进入这个else,但是这个else中并未添加任何代码,所以只会用8M的内钟执行,我们要做的就是在else中添加外部启动失败的代码:

    /* 开启HSI 即内部晶振时钟 */
        RCC->CR |= (uint32_t)0x00000001; 

        /*选择HSI为PLL的时钟源HSI必须2分频给PLL*/
        RCC->CFGR |= (uint32_t)RCC_CFGR_PLLSRC_HSI_Div2; 

                         
        /*PLLCLK=8/2*13=52MHz   设置倍频得到时钟源PLL的频率*/
        RCC->CFGR |= (uint32_t)RCC_CFGR_PLLMULL12;

        /* PLL不分频输出  */
        RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;
         
        /* 使能 PLL时钟 */
        RCC->CR |= RCC_CR_PLLON;

        /* 等待PLL时钟就绪*/
        while((RCC->CR & RCC_CR_PLLRDY) == 0)
        {
        }


        /* 选择PLL为系统时钟的时钟源 */
        RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));
        RCC->CFGR |= (uint32_t)RCC_CFGR_SW_PLL;    

        /* 等到PLL成为系统时钟的时钟源*/
        while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)0x08)
        {

        }

该代码填充后如果检测到有外部时钟,便以外部时钟为基准进行时钟的倍频处理,达到用户想要的时钟频率,如果你的MCU没有外部时钟,则会执行else内部的代码,将时钟源切换到内部时钟并进行倍频。如此便达到了自动检测时钟的目的。
问题:这是我根据STM32F031的时钟切换代码演变来的,但是这个只能用于主频小于或等于48M时使用,如果倍频因子超过12,也就是主频超过48M是,就会出现硬件错误,直接卡死。当需要更高的主频时就需要如下配置。
在else里面最开头添加:

    /* Enable Prefetch Buffer */
    FLASH->ACR |= FLASH_ACR_PRFTBE;
    /* Flash 2 wait state */
    FLASH->ACR &= (uint32_t)((uint32_t)~FLASH_ACR_LATENCY);
    FLASH->ACR |= (uint32_t)FLASH_ACR_LATENCY_2;        

stm32f030 系统时钟,STM32F0,单片机,stm32,系统时钟切换
问:
如果我的MCU有晶振,但是我不想用外部,就想用内部,如何处理呢?
答:
打一顿就好了,有外部不用干啥用内部呢?
上述纯属恶搞自己,被坑过。。。
因为内部时钟不准!!!测试内部时钟在使用定时器时会有偏差,本人在此吃过亏。此问题在STM32F031和GD32E230中均有体现。但是USART和SPI通信是正常的,即使我用的2.5M波特率的USART和8M的SPI。
解决办法,上述代码不用动,添加如下代码。
stm32f030 系统时钟,STM32F0,单片机,stm32,系统时钟切换
通过注释原文
RCC->CR |= ((uint32_t)RCC_CR_HSEON);
并添加
RCC->CR &= ~((uint32_t)RCC_CR_HSEON);可默认之以内部时钟方式启动。
注意在主函数加上SystemInit();函数哦!!!
最终代码如下:

static void SetSysClockTo72(void)
{
  __IO uint32_t StartUpCounter = 0, HSEStatus = 0;
  
  /* SYSCLK, HCLK, PCLK2 and PCLK1 configuration ---------------------------*/    
  /* Enable HSE */    
//  RCC->CR |= ((uint32_t)RCC_CR_HSEON);
        /*取消改行注释并注释上文,可默认启动内部时钟*/
        RCC->CR &= ~((uint32_t)RCC_CR_HSEON);
  /* Wait till HSE is ready and if Time out is reached exit */
  do
  {
    HSEStatus = RCC->CR & RCC_CR_HSERDY;
    StartUpCounter++;  
  } while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));

  if ((RCC->CR & RCC_CR_HSERDY) != RESET)
  {
    HSEStatus = (uint32_t)0x01;
  }
  else
  {
    HSEStatus = (uint32_t)0x00;
  }  

  if (HSEStatus == (uint32_t)0x01)
  {
    /* Enable Prefetch Buffer */
    FLASH->ACR |= FLASH_ACR_PRFTBE;

    /* Flash 2 wait state */
    FLASH->ACR &= (uint32_t)((uint32_t)~FLASH_ACR_LATENCY);
    FLASH->ACR |= (uint32_t)FLASH_ACR_LATENCY_2;    

 
    /* HCLK = SYSCLK */
    RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;
      
    /* PCLK2 = HCLK */
    RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE2_DIV1;
    
    /* PCLK1 = HCLK */
    RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV2;

#ifdef STM32F10X_CL
    /* Configure PLLs ------------------------------------------------------*/
    /* PLL2 configuration: PLL2CLK = (HSE / 5) * 8 = 40 MHz */
    /* PREDIV1 configuration: PREDIV1CLK = PLL2 / 5 = 8 MHz */
        
    RCC->CFGR2 &= (uint32_t)~(RCC_CFGR2_PREDIV2 | RCC_CFGR2_PLL2MUL |
                              RCC_CFGR2_PREDIV1 | RCC_CFGR2_PREDIV1SRC);
    RCC->CFGR2 |= (uint32_t)(RCC_CFGR2_PREDIV2_DIV5 | RCC_CFGR2_PLL2MUL8 |
                             RCC_CFGR2_PREDIV1SRC_PLL2 | RCC_CFGR2_PREDIV1_DIV5);
  
    /* Enable PLL2 */
    RCC->CR |= RCC_CR_PLL2ON;
    /* Wait till PLL2 is ready */
    while((RCC->CR & RCC_CR_PLL2RDY) == 0)
    {
    }
    
   
    /* PLL configuration: PLLCLK = PREDIV1 * 9 = 72 MHz */ 
    RCC->CFGR &= (uint32_t)~(RCC_CFGR_PLLXTPRE | RCC_CFGR_PLLSRC | RCC_CFGR_PLLMULL);
    RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLXTPRE_PREDIV1 | RCC_CFGR_PLLSRC_PREDIV1 | 
                            RCC_CFGR_PLLMULL9); 
#else    
    /*  PLL configuration: PLLCLK = HSE * 9 = 72 MHz */
    RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE |
                                        RCC_CFGR_PLLMULL));
    RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC_HSE | RCC_CFGR_PLLMULL16);
#endif /* STM32F10X_CL */

    /* Enable PLL */
    RCC->CR |= RCC_CR_PLLON;

    /* Wait till PLL is ready */
    while((RCC->CR & RCC_CR_PLLRDY) == 0)
    {
    }
    
    /* Select PLL as system clock source */
    RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));
    RCC->CFGR |= (uint32_t)RCC_CFGR_SW_PLL;    

    /* Wait till PLL is used as system clock source */
    while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)0x08)
    {
    }
  }
  else
  { 
    /* Enable Prefetch Buffer */
    FLASH->ACR |= FLASH_ACR_PRFTBE;
    /* Flash 2 wait state */
    FLASH->ACR &= (uint32_t)((uint32_t)~FLASH_ACR_LATENCY);
    FLASH->ACR |= (uint32_t)FLASH_ACR_LATENCY_2;          
           /* 开启HSI 即内部晶振时钟 */
        RCC->CR |= (uint32_t)0x00000001; 

        /*选择HSI为PLL的时钟源HSI必须2分频给PLL*/
        RCC->CFGR |= (uint32_t)RCC_CFGR_PLLSRC_HSI_Div2; 

                         
        /*PLLCLK=8/2*13=52MHz   设置倍频得到时钟源PLL的频率*/
        RCC->CFGR |= (uint32_t)RCC_CFGR_PLLMULL16;

        /* PLL不分频输出  */
        RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;
         
        /* 使能 PLL时钟 */
        RCC->CR |= RCC_CR_PLLON;

        /* 等待PLL时钟就绪*/
        while((RCC->CR & RCC_CR_PLLRDY) == 0)
        {
        }


        /* 选择PLL为系统时钟的时钟源 */
        RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));
        RCC->CFGR |= (uint32_t)RCC_CFGR_SW_PLL;    

        /* 等到PLL成为系统时钟的时钟源*/
        while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)0x08)
        {

        }
  }
}

在STM32F030或者STM32F031中同样可以做类似操作:

static void SetSysClock(void)
{
  __IO uint32_t StartUpCounter = 0, HSEStatus = 0;
  
  /* SYSCLK, HCLK, PCLK configuration ----------------------------------------*/
  /* Enable HSE */   

RCC->CR |= ((uint32_t)RCC_CR_HSEON);
        //修改为内部晶振        
//        RCC->CR &= ~((uint32_t)RCC_CR_HSEON);
 
  /* Wait till HSE is ready and if Time out is reached exit */
  do
  {
    HSEStatus = RCC->CR & RCC_CR_HSERDY;
    StartUpCounter++;  
  } while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));

  if ((RCC->CR & RCC_CR_HSERDY) != RESET)
  {
    HSEStatus = (uint32_t)0x01;
  }
  else
  {
    HSEStatus = (uint32_t)0x00;
  }  

  if (HSEStatus == (uint32_t)0x01)
  {
    /* Enable Prefetch Buffer and set Flash Latency */
    FLASH->ACR = FLASH_ACR_PRFTBE | FLASH_ACR_LATENCY;
 
    /* HCLK = SYSCLK */
    RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;
      
    /* PCLK = HCLK */
    RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE_DIV1;

    /* PLL configuration = HSE * 6 = 48 MHz */
    RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE | RCC_CFGR_PLLMULL));
    RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC_PREDIV1 | RCC_CFGR_PLLXTPRE_PREDIV1 | RCC_CFGR_PLLMULL7);
            
    /* Enable PLL */
    RCC->CR |= RCC_CR_PLLON;

    /* Wait till PLL is ready */
    while((RCC->CR & RCC_CR_PLLRDY) == 0)
    {
    }

    /* Select PLL as system clock source */
    RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));
    RCC->CFGR |= (uint32_t)RCC_CFGR_SW_PLL;    

    /* Wait till PLL is used as system clock source */
    while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)RCC_CFGR_SWS_PLL)
    {
    }
  }
  else
  { /* If HSE fails to start-up, the application will have wrong clock 
         configuration. User can add here some code to deal with this error */
                   // HSI 内部时钟做为PLL时钟源并配置PLL 56M做为系统时钟
    /* Enable Prefetch Buffer and set Flash Latency */
    FLASH->ACR = FLASH_ACR_PRFTBE | FLASH_ACR_LATENCY;

    /* HCLK = SYSCLK */
    RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;

    /* PCLK = HCLK */
    RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE_DIV1;

    // PLL configuration = (HSI/2) * 12 = 48 MHz
    RCC_PLLConfig(RCC_PLLSource_HSI_Div2, RCC_PLLMul_14); // 8M/2 * 14 = 56M

    /* Enable PLL */
    RCC->CR |= RCC_CR_PLLON;

    /* Wait till PLL is ready */
    while ((RCC->CR & RCC_CR_PLLRDY) == 0)
    {
    }

    /* Select PLL as system clock source */
    RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); // PLL 做系统时钟

    /* Wait till PLL is used as system clock source */
    while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)RCC_CFGR_SWS_PLL)
    {
    }
  }  
}

在STM32F103中,使用内部晶振,最大时钟频率也只能到64M,受倍频因子的影响嘛,最大只能倍频16倍。 但是在STM32F031中,标准使用内部时钟主频只有48M,但是我们仍然可以继续倍频,用内部时钟进行超频达到64M。在我们的产品中就用过内部超频到56M,USART和SPI长时间无问题。
而GD32E230因为其高达32的倍频因子,内部时钟可以倍频到128M。
stm32f030 系统时钟,STM32F0,单片机,stm32,系统时钟切换
但是这种几分钟内没有明显发热现象,不敢做长时间测试,现在MCU有点小贵。干费一个就心疼。
总之,无论ST还是国产,其主频更适合在规定的范围内运行,但是跑极限在短时间内也没有很大的问题。这些数据仅供参考。
至此单片机时钟讲解就结束了,没有多少理论性的东西,主要是解决一些时钟使用时的问题,自己也总是忘,留帖一篇作为自省。
此帖中所有代码都经过本人测试,运行无任何问题,但是对于问题的阐述或者一些见解可能有错误,欢迎大佬们批评指正,一定接受各种批评,努力完善。文章来源地址https://www.toymoban.com/news/detail-605468.html

到了这里,关于关于单片机的时钟浅谈及STM32F103/F030单片机的内外时钟切换问题的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 测试、获取单片机STM32系统时钟值方法

          有时候,做一个项目出了问题,第一个要怀疑的是系统时钟,本篇是说明如何监控项目的系统 频率的。      在STM32标准库项目中,可以通过以下步骤来获取系统时钟: 打开项目的主文件(通常为main.c或stm32fxxx_it.c)。 在文件顶部,找到包含STM32的头文件,例如\\\"stm32

    2024年02月20日
    浏览(30)
  • stm32f103单片机—编码器测速

    stm32f103ZET6开发板(非指定) MG513P3012V型号电机(带霍尔编码器)(非指定) 此种测速方法要求单片机的定时器具有编码器模式,对于stm32f1系列,具备编码器模式的定时器有TIM1/2/3/4/5/8, 定时器使用通道1、2来实现编码器功能 ,接线时注意把A/B相接到定时器通道1/2的引脚。 电

    2024年02月06日
    浏览(63)
  • STM32F103单片机通过SPI全双工通信协议与W25Q64(FLASH)进行通信【串行同步通信(数据线与时钟线配合),(一主多从模式)】附相关驱动代码详解

    1.W25Qxx系列是一种低成本、小型化、使用简单的 非易失性存储器 ,常应用于数据存储、字库存储、固件程序存储等场景 2.存储介质: Nor Flash(闪存) 3.时钟频率:80MHz / 160MHz (Dual SPI) / 320MHz (Quad SPI) 4.存储容量(24位地址): W25Q40: 4Mbit / 512KByte W25Q80: 8Mbit / 1MByte W25Q16: 16

    2024年04月13日
    浏览(49)
  • 【单片机】STM32单片机频率计程序,外部脉冲计数程序,基于脉冲计数的频率计程序,STM32F103

    两种方法用于在单片机中实现频率计的功能。 第一种方法是通过定时器来衡量信号的周期,然后将周期转换为频率。在这种方法中,你可以使用单片机的定时器模块来测量输入信号的周期,定时器会产生一个计数值,你可以根据这个计数值来推算出输入信号的周期,并通过简

    2024年02月11日
    浏览(37)
  • STM32F103ZE单片机呼吸灯源代码

    本实验采用的系统频率SYSTIM为8MHZ,如果频率改变需要修改一个数值

    2024年02月09日
    浏览(41)
  • FreeRTOS_Stm32F103系列单片机标准库移植

    链接:FreeRTOS 下面的教程是基于从github下载压缩包进行的,最好下载这个或者直接看3.1,从我百度网盘下载。如果是别的下载源也问题不大,大同小异。 此时我们需要下载以下两个仓库, 点进去按下面的步骤下载就行了,另一个也是这样下。 链接: FreeRTOS官网 打开链接我们

    2024年01月22日
    浏览(37)
  • JDY-31蓝牙模块远程控制STM32F103单片机

       手机app通过蓝牙模块发送指令实时控制单片机的外设功能,比如发送衣柜开关门指令(舵机旋转),衣架上升降落(步进电机正转反转),远程开启去污除湿功能(继电器控制打开关闭小风扇+加热片)。 本次例子:手机APP连接蓝牙模块远程控制SG90舵机正转(0-180°)和反

    2024年02月01日
    浏览(50)
  • 【单片机】STM32单片机,定时器,多路PWM,TIM1、TIM2、TIM3、TIM4,STM32F103

    下图是定时器相关引脚: 在《STM32中文参考手册V10.pdf》有写: TIM1 的PWM是带互补输出的,较为高级和复杂,有兴趣可以参考其他介绍文章,这里的代码让7个引脚输出PWM。 调用: 这里没有重映射,注意不能把PA9 PA10 初始化成串口去了。 timer.c timer.h 调用: 这里没有重映射。

    2024年02月11日
    浏览(52)
  • (STM32F103单片机)DHT11温湿度传感器

    目录   一,产品介绍 二,产品亮点 三,产品参数 四,引脚连接及通信说明  五,原理讲解 六,源码 1,DHR11.C 2.DHR11.H 3,main.c DHT11数字温湿度传感器是一款含有已校准数字信号输出的温湿度复合传感器。它应用专用的数字模块采集技术和温湿度传感技术,确保产品具有极高

    2023年04月08日
    浏览(44)
  • STM32F103单片机控制继电器开关小风扇和加热片

       在智能衣柜中,使用异味传感器检测柜内异味值,当异味值大于设定值时会自动开启小风扇,小风扇起到一个排污去浊的功能,再加上温湿度传感器检测柜内的温度和湿度,当温湿度达到设定值时,加热片自动发热,起到一个降温除霉的作用。想要使小风扇和加热片自动

    2024年02月02日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包