微软、OpenAI、Cohere等公司已经开始测试使用合成数据来训练AI模型。Cohere首席执行官Aiden Gomez表示,合成数据可以适用于很多训练场景,只是目前尚未全面推广。
已有的(通用)数据资源似乎接近效能极限,开发人员认为,网络上那些通用数据已不足以推动AI模型的性能发展。Gomez便指出,网络极为嘈杂混乱,“它并不能为你提供你真正想要的数据,网络无法满足我们的一切需求。”
今年5月的一场活动上,OpenAI首席执行官Sam Altman曾被问及,是否担心监管部门调查ChatGPT可能侵犯用户隐私的事。Altman对此不置可否,并表示自己“非常有信心,很快所有数据都将是合成数据”。
▌人类真实数据售价高昂
为了大幅提高AI模型的性能,提升它们在科学、医学、商业等领域的水平,AI模型需要的是“独特且复杂”的数据集。而这类数据或是需要来自科学家、医生、作家、演员、工程师等“内行人”,或是需要从药企、银行、零售商等大型企业获取专业数据。
这也就带来了让AI公司们转向合成数据的另一层原因——数据太贵了。
且不说那些技术含量极高的制药、科学数据,光是之前Reddit和推特给出的数据采集要价,都被Gomez“嫌弃”价格太高。
在这种情况下,合成数据自然成了一个实惠方案,不仅可以避开这些数据的高昂售价,还能生成一些更复杂的数据来训练AI。
▌如何用合成数据训练?
具体如何用合成数据训练AI大模型?Gomez举了一个例子:
在训练一个高级数学模型时,Cohere可能会使用两个AI模型进行对话,其中一个扮演数学老师,另一个则充当学生。之后这两个模型就会就三角函数等数学问题对话,“其实一切都是模型‘想象’出来的”。
如果在这个过程中,模型说错了什么,人类就会在查看这段对话时作出纠正。
而微软研究院最近的两项研究,也表明合成数据可以用来训练AI模型,这些模型一般比OpenAI的GPT-4、谷歌的PaLM-2更小更简单。
在其中一篇论文中,GPT-4生成了一个名为“TinyStories”的短篇故事合成数据集,里面使用的单词全部非常简单,一个四岁儿童都能理解。这一数据集被用来训练一个简单的大语言模型,后者能生成流畅且语法正确的故事。
▌晨曦还是暮光?
想要合成数据的客户有了,供应商自然也如雨后春笋般涌现,例如Scale AI、Gretel.ai等初创公司。Gretel.ai由来自美国国安局和中情局的前情报分析师成立,其已与谷歌、汇丰银行、Riot Games、Illumina等公司合作,用合成数据来扩充现有数据,帮助训练人工智能模型。
Gretel.ai首席执行官Ali Golshan表示,合成数据的关键在于,它既能保护数据集中所有个人的隐私,又能保持数据的统计完整性。
同时,合成数据还可以消除现有数据中的偏差和不平衡。
不过,也有人不看好合成数据。
反对派认为,并不是所有合成数据都经过精心调试,并能反映或改进真实世界。
来自牛津、剑桥、帝国理工等机构研究人员发现,合成数据的负面影响甚至堪比“毒药”。如果在训练时大量使用AI内容,会引发模型崩溃(model collapse),造成不可逆的缺陷。
新一代模型的训练数据会被上一代模型的生成数据所污染,从而对现实世界的感知产生错误理解。随着时间推移,模型就会忘记真实基础数据部分。即使在几乎理想的长期学习状态下,这个情况也无法避免——研究人员也将此形容为“AI大模型患上‘痴呆症’”。
即便是合成数据从业人员Golshan也坦承,在劣质合成数据上进行训练可能会阻碍进步。文章来源:https://www.toymoban.com/news/detail-605836.html
“网上越来越多的内容都是由AI生成的。随着时间推移,这确实会导致退化,因为这些大模型产生的知识都是重复的,没有任何新的见解。文章来源地址https://www.toymoban.com/news/detail-605836.html
到了这里,关于微软、OpenAI用上“数据永动机” 合成数据是晨曦还是暮光?的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!