Day 42算法记录| 动态规划 08

这篇具有很好参考价值的文章主要介绍了Day 42算法记录| 动态规划 08。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

139. 单词拆分

单词就是物品,字符串s就是背包
1.dp[0]背包啥也不要用装,true。
2. for循环,顺序很重要,所以先背包再物品
如果求组合数就是外层for循环遍历物品,内层for遍历背包
如果求排列数就是外层for遍历背包,内层for循环遍历物品
3.递归:
要么装包或者不装

添加链接描述

class Solution {
    public boolean wordBreak(String s, List<String> wordDict) {
        int len = s.length();
     boolean[] dp = new boolean[len+1];
     dp[0] = true;
     for(int i=1;i<=len;i++){ //背包
        for(String word : wordDict){
            int n = word.length();
            if(i>=n&&word.equals(s.substring(i-n,i))){
                dp[i] =  dp[i] ||dp[i-n];
            }
        }
     }
     return dp[len];
    }
}

多重背包问题

背包问题总结

把这五部都搞透了,算是对动规来理解深入了。

确定dp数组(dp table)以及下标的含义
确定递推公式
dp数组如何初始化
确定遍历顺序
举例推导dp数组

Day 42算法记录| 动态规划 08,算法,动态规划
2.遍历顺序
一维:第二层的背包是从大到小
Day 42算法记录| 动态规划 08,算法,动态规划注意for循环分别表示的含义
Day 42算法记录| 动态规划 08,算法,动态规划文章来源地址https://www.toymoban.com/news/detail-606317.html

到了这里,关于Day 42算法记录| 动态规划 08的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 算法记录 | Day38 动态规划

    对于动态规划问题,将拆解为如下五步曲 确定dp数组(dp table)以及下标的含义 确定递推公式 dp数组如何初始化 确定遍历顺序 举例推导dp数组 思路: 确定dp数组(dp table)以及下标的含义:dp[i]的定义为:第i个数的斐波那契数值是dp[i] 确定递推公式:状态转移方程 dp[i] = dp

    2023年04月22日
    浏览(44)
  • 算法记录 | Day55 动态规划

    思路: 1.确定dp数组(dp table)以及下标的含义: dp[i][j] 表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为 dp[i][j] 。 2.确定递推公式: if (s[i - 1] == t[j - 1]) t中找到了一个字符在s中也出现了, dp[i][j] = dp[i - 1][j - 1] + 1 if (s[i - 1] != t[j - 1]) 相当于t要

    2024年02月03日
    浏览(49)
  • 算法记录 | Day45 动态规划

    改为:一步一个台阶,两个台阶,三个台阶,…,直到 m个台阶。问有多少种不同的方法可以爬到楼顶呢? 1阶,2阶,… m阶就是物品,楼顶就是背包。 每一阶可以重复使用,例如跳了1阶,还可以继续跳1阶。 问跳到楼顶有几种方法其实就是问装满背包有几种方法。 此时大家

    2024年02月11日
    浏览(33)
  • Day36算法记录|动态规划 dp02

    步骤回顾: C语言版本写的很清楚 对应得Java版本视频解析 方法一: 动态规划 1 确定dp数组(dp table)以及下标的含义 dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。 2 . 确定递推公式 ,求dp[i][j],只能有两个方向来推导出来,即dp[i - 1][j] 和 dp[i][j - 1]。 3. dp数

    2024年02月12日
    浏览(51)
  • Day48 算法记录|动态规划15 (子序列)

    这道题和1143最长公共字串相同 dp[i][j] 表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]。 方法二 双指针 dp[i][j]:以i-1为结尾的s子序列中出现以j-1为结尾的t的个数为dp[i][j]。 这个把递推讲的很详细 初始化: 状态方程: 相同的情况:

    2024年02月15日
    浏览(33)
  • Day47 算法记录|动态规划14子序列

    这道题和718. 最长重复子数组的区别:这道题的 子序列可以不连续 这个视频讲解的很好 和上面一道题一摸一样 以绘制连接两个数字 A[i] 和 B[j] 的直线,只要 A[i] == B[j],且直线不与任何其他连线(非水平线)相交。 讲解的很好的一个 d p [ i ] dp[i] d p [ i ] 表示包括下标i(以

    2024年02月15日
    浏览(37)
  • Day 42 动态规划 4

    代码随想录 1. 思路 背包问题的主要特征为, 在有限制的情况下满足最优化 ,因此可以构造二维dp数组,一个维度记录成本,一个维度记录收益,一步步寻找最优解。 (1)dp数组以及下标含义 dp[i][j]代表0-i的物品, 在j的背包容量下,可以形成的最大价值 。注意,这里 i为序

    2024年01月16日
    浏览(33)
  • 动态规划Day08(背包结束,未写完)

    力扣题目链接(opens new window) 给定一个非空字符串 s 和一个包含非空单词的列表 wordDict,判定 s 是否可以被空格拆分为一个或多个在字典中出现的单词。 说明: 拆分时可以重复使用字典中的单词。 你可以假设字典中没有重复的单词。 示例 1: 输入: s = \\\"leetcode\\\", wordDict = [\\\"le

    2024年01月15日
    浏览(39)
  • 研习代码 day42 | 动态规划——买卖股票的最佳时机 I II

            1.1 题目         给定一个数组  prices  ,它的第  i  个元素  prices[i]  表示一支给定股票第  i  天的价格。         你只能选择  某一天  买入这只股票,并选择在  未来的某一个不同的日子  卖出该股票。设计一个算法来计算你所能获取的最大利润。

    2024年02月03日
    浏览(41)
  • DAY42:动态规划(二)斐波那契数列+爬楼梯+最小花费爬楼梯

    斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: 给定 n ,请计算 F(n) 。 示例 1: 示例 2: 示例 3: 提示: 0 = n = 30 思路:动规五步 确定dp数组和数组下标含义 DP题目都需要定义一维

    2024年02月13日
    浏览(57)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包