压缩感知重构算法之正交匹配追踪算法(OMP)

这篇具有很好参考价值的文章主要介绍了压缩感知重构算法之正交匹配追踪算法(OMP)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

算法的重构是压缩感知中重要的一步,是压缩感知的关键之处。因为重构算法关系着信号能否精确重建,国内外的研究学者致力于压缩感知的信号重建,并且取得了很大的进展,提出了很多的重构算法,每种算法都各有自己的优缺点,使用者可以根据自己的情况,选择适合自己的重构算法,大大增加了使用的灵活性,也为我们以后的研究提供了很大的方便。

压缩感知的重构算法主要分为三大类:

1.组合算法   2.贪婪算法  3.凸松弛算法

三种算法对比分析如下:

算法类别

定义

优缺点

具体算法

贪婪算法

贪婪算法首先选取合适的原子,再逐步进行递增,进而逼近信号矢量,利用这种过程进行

计算量和精度的要求居中,也是三种重构算法中应用最大的一种

(1)匹配追踪算法

(2)正交匹配追踪算法

(3)分段正交匹配追踪算法

(4)正则化正交匹配追踪算法

(5)稀疏自适应匹配追踪算法

组合算法

先是对信号进行结构采样,然后再通过对采样的数据进行分组测试,最后完成信号的重构

需要观测的样本数目比较多但运算的效率最高

(1) 傅里叶采样

(2) 链式追踪算法

(3)  HHS追踪算法

凸松弛算法

法,它将非凸问题转化为凸问题进行求解,即l0范数转化成l1范数并采用线性规划来求解

计算量大但是需要观测的数量少重构的时候精度高

(1)基追踪算法

(2)最小全变差算法

(3)内点法

(4)梯度投影算法

(5)凸集交替投影算法

本篇主要介绍正交匹配追踪算法(OMP)

1、OMP算法的原理

OMP算法是在MP算法的基础上进行改进的,沿用了MP算法的重构的思想,但是又对MP算法进行了改进,使得算法的效率更高,应用更加的广泛。

MP算法的信号分解中步骤中介绍:,这说明信号在已经选择的原子上的投影(等是右边第一项)是非正交的,还存在着残差,也就是说每次迭代的过程是次最优的,不是最优解,要想最终的迭代收敛,需要的迭代次数较多。OMP算法就是根据MP算法的不足之处加以改进,把所选择的原子首先通过Schimidt正交化处理,使得在达到迭代条件的时候需要的迭代次数较MP算法少,但是正交化的过程中会增加计算量。

OMP算法正交化原理:

正交匹配追踪算法omp原理,压缩感知,算法

2、OMP算法的流程图 

算法流程图如下:

正交匹配追踪算法omp原理,压缩感知,算法

 3、OMP算法的算法步骤

算法步骤如下:

正交匹配追踪算法omp原理,压缩感知,算法

 4、OMP算法的信号重构

本节对OMP算法进行重构,采用一维离散信号和二维lena信号对其进行信号重构,来观察OMP算法的重构功能。

(1)一维离散信号的OMP算法仿真

  本次仿真使用matlab随机生成的一维离散信号,稀疏度k=15,信号长度N=512,观测向量的长度M=128,那么采样率M/N=0.25,其中的观测矩阵是高斯随机矩阵。采用OMP算法对一维信号进行重构,重构图如1:

正交匹配追踪算法omp原理,压缩感知,算法

 图1:OMP算法重构一维信号

通过上面的重构可以得出,OMP算法对一维信号有很好的重构作用。

(2)二维lena图像的OMP算法重构

OMP算法对二维信号进行重构,在这里我们采取和MP算法二维信号重构的方法,也是先采取离散余弦变换(dct)使数据稀疏,算法重构结束之后再进行离散反余弦变换(idct),这样就转化为了我们所需要的。本次在matlab中的仿真,我们采用的是256X256的Lena的二维图像,M=180,N=256,稀疏度k=40,M/N=0.7,观测矩阵是高斯随机矩阵,采用OMP算法对二维图像进行重构,重构效果如图:

正交匹配追踪算法omp原理,压缩感知,算法

正交匹配追踪算法omp原理,压缩感知,算法文章来源地址https://www.toymoban.com/news/detail-606328.html

到了这里,关于压缩感知重构算法之正交匹配追踪算法(OMP)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 压缩感知入门③基于ADMM的全变分正则化的压缩感知重构算法

    压缩感知系列博客: 压缩感知入门①从零开始压缩感知 压缩感知入门②信号的稀疏表示和约束等距性 压缩感知入门③基于ADMM的全变分正则化的压缩感知重构算法 压缩感知入门④基于总体最小二乘的扰动压缩感知重构算法 信号压缩是是目前信息处理领域非常成熟的技术,其

    2024年02月07日
    浏览(52)
  • 使用omp并行技术加速最短路径算法-迪杰斯特拉(Dijkstra)算法(记录最短路径和距离)

    原理: Dijkstra算法是解决**单源最短路径**问题的**贪心算法** 它先求出长度最短的一条路径,再参照该最短路径求出长度次短的一条路径     直到求出从源点到其他各个顶点的最短路径。 首先假定源点为u,顶点集合V被划分为两部分:集合 S 和 V-S。 初始时S中仅含有源点u,

    2024年02月10日
    浏览(50)
  • 【自动驾驶】感知融合中的匹配算法

            匹配算法,就是说当前帧的感知上游输入过来的量测值如何与前一帧的track匹配起来。首先我们需要计算track与量测值之间的距离,然后通过一定的分配算法来找到每个track的最佳匹配。         距离度量是衡量两个目标相近的一种方式,有可能是2D的图像特征度量

    2023年04月08日
    浏览(42)
  • 压缩感知的未来研究方向

    p2范数优化问题 压缩感知理论在图像压缩编码等方面也应该有很广泛的前景, 但由于信号的恢复方法是建立在12范数意义下, 数据之间还有很大的冗余性没有去除, 相比传统的小波变换编码, 压缩感知理论应用于图像压缩的效果还不理想. p2范数的优化是提高基于压缩感知理论的

    2024年02月08日
    浏览(48)
  • 压缩感知(Compressed Sensing,CS)的基础知识

    压缩感知(Compressed Sensing,CS)是一种用于信号处理的技术,旨在以少于奈奎斯特采样定理所要求的样本频率来重构信号。该技术利用信号的稀疏性,即信号可以用较少的非零系数表示。压缩感知在图像获取中的应用使得在采集过程中就以较少的样本来捕获图像,然后通过算

    2024年02月20日
    浏览(37)
  • VALSE 20200415 | 机器学习 vs 压缩感知:核磁共振成像与重建

    报告主页:http://valser.org/article-359-1.html 20200415 机器学习 vs 压缩感知:核磁共振成像与重建 PPT:Shanshan Wang slides | Bihan Wen slides 谷歌学术: 王珊珊 Shanshan Wang | siat 文碧汉 | ntu 可以参考前面链接中的ppt,这里不重点讲,我们主要关注文碧汉老师的talk。 重建问题简介 计算机视觉

    2024年02月13日
    浏览(49)
  • UEditorPlus v3.3.0 图片上传压缩重构,UI优化,升级基础组件

    UEditor是由百度开发的所见即所得的开源富文本编辑器,基于MIT开源协议,该富文本编辑器帮助不少网站开发者解决富文本编辑器的难点。 UEditorPlus 是有 ModStart 团队基于 UEditor 二次开发的富文本编辑器,主要做了样式的定制,更符合现代浏览器的审美。 在开发过程中解决了部

    2024年02月14日
    浏览(50)
  • 【对于一维信号的匹配】对一个一维(时间)信号y使用自定义基B执行匹配追踪(MP)研究(Matlab代码实现)

     💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码实现 对一个

    2024年02月13日
    浏览(43)
  • 神经网络随记-参数矩阵、剪枝、模型压缩、大小匹配、、

    在神经网络中,参数矩阵是模型学习的关键部分,它包含了神经网络的权重和偏置项。下面是神经网络中常见的参数矩阵: 权重矩阵(Weight Matrix):权重矩阵用于线性变换操作,将输入数据与神经元的连接权重相乘。对于全连接层或线性层,每个神经元都有一个权重矩阵。

    2024年02月16日
    浏览(37)
  • 基于正交滤波器组的语音DPCM编解码算法matlab仿真

    目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程           matlab2022a        在语音信号处理中,一种常见的编解码技术是差分脉冲编码调制(DPCM)。DPCM是一种无损或有损压缩技术,通过利用信号中的冗余性来减少数据传

    2024年02月15日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包