【如何训练一个中英翻译模型】LSTM机器翻译模型训练与保存(二)

这篇具有很好参考价值的文章主要介绍了【如何训练一个中英翻译模型】LSTM机器翻译模型训练与保存(二)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

系列文章

【如何训练一个中英翻译模型】LSTM机器翻译seq2seq字符编码(一)
【如何训练一个中英翻译模型】LSTM机器翻译模型训练与保存(二)
【如何训练一个中英翻译模型】LSTM机器翻译模型部署(三)
【如何训练一个中英翻译模型】LSTM机器翻译模型部署之onnx(python)(四)

基于LSTM训练一个翻译器,要怎么做呢?其实很简单,也没那么复杂。
主要包括以下几个步骤:
1、加载训练集
2、训练集数据处理(字符编码),可参见:
【如何训练一个中译英翻译器】LSTM机器翻译seq2seq字符编码(一)
3、网络搭建
4、启动训练
5、模型保存
6、模型加载与推理
下面来看下整个过程:

1、加载训练集

from keras.models import Model
from keras.layers import Input, LSTM, Dense
import numpy as np

batch_size = 64  # Batch size for training.
epochs = 1000  # Number of epochs to train for.
latent_dim = 256  # Latent dimensionality of the encoding space.
num_samples = 12000  # Number of samples to train on.
data_path = 'cmn.txt'

2、训练集数据处理

数据集预处理

# Vectorize the data.
input_texts = [] # 保存英文数据集
target_texts = [] # 保存中文数据集
input_characters = set() # 保存英文字符,比如a,b,c
target_characters = set() # 保存中文字符,比如,你,我,她
with open(data_path, 'r', encoding='utf-8') as f:
    lines = f.read().split('\n')# 一行一行读取数据
for line in lines[: min(num_samples, len(lines) - 1)]: # 遍历每一行数据集(用min来防止越出)
    input_text, target_text = line.split('\t') # 分割中英文
    # We use "tab" as the "start sequence" character
    # for the targets, and "\n" as "end sequence" character.
    target_text = '\t' + target_text + '\n'
    input_texts.append(input_text)
    target_texts.append(target_text)
    for char in input_text: # 提取字符
        if char not in input_characters:
            input_characters.add(char)
    for char in target_text:
        if char not in target_characters:
            target_characters.add(char)
            
input_characters = sorted(list(input_characters)) # 排序一下
target_characters = sorted(list(target_characters))
num_encoder_tokens = len(input_characters) # 英文字符数量
num_decoder_tokens = len(target_characters) # 中文文字数量
max_encoder_seq_length = max([len(txt) for txt in input_texts]) # 输入的最长句子长度
max_decoder_seq_length = max([len(txt) for txt in target_texts])# 输出的最长句子长度

print('Number of samples:', len(input_texts))
print('Number of unique input tokens:', num_encoder_tokens)
print('Number of unique output tokens:', num_decoder_tokens)
print('Max sequence length for inputs:', max_encoder_seq_length)
print('Max sequence length for outputs:', max_decoder_seq_length)

数据集编码

# mapping token to index, easily to vectors
# 处理方便进行编码为向量
# {
#   'a': 0,
#   'b': 1,
#   'c': 2,
#   ...
#   'z': 25
# }
input_token_index = dict([(char, i) for i, char in enumerate(input_characters)])
target_token_index = dict([(char, i) for i, char in enumerate(target_characters)])

# np.zeros(shape, dtype, order)
# shape is an tuple, in here 3D
encoder_input_data = np.zeros( # (12000, 32, 73) (数据集长度、句子长度、字符数量)
    (len(input_texts), max_encoder_seq_length, num_encoder_tokens),
    dtype='float32')
decoder_input_data = np.zeros( # (12000, 22, 2751)
    (len(input_texts), max_decoder_seq_length, num_decoder_tokens),
    dtype='float32')
decoder_target_data = np.zeros( # (12000, 22, 2751)
    (len(input_texts), max_decoder_seq_length, num_decoder_tokens),
    dtype='float32')

# 遍历输入文本(input_texts)和目标文本(target_texts)中的每个字符,
# 并将它们转换为数值张量以供深度学习模型使用。
#编码如下
#我,你,他,这,国,是,家,人,中
#1  0  0   0  1   1  0   1  1,我是中国人
#1  0   1  0  0   1  1   1  0,他是我家人
# input_texts contain all english sentences
# output_texts contain all chinese sentences
# zip('ABC','xyz') ==> Ax By Cz, looks like that
# the aim is: vectorilize text, 3D
# zip(input_texts, target_texts)成对取出输入输出,比如input_text = 你好,target_text = you good

for i, (input_text, target_text) in enumerate(zip(input_texts, target_texts)):
    for t, char in enumerate(input_text):
        # 3D vector only z-index has char its value equals 1.0
        encoder_input_data[i, t, input_token_index[char]] = 1.
    for t, char in enumerate(target_text):
        # decoder_target_data is ahead of decoder_input_data by one timestep
        decoder_input_data[i, t, target_token_index[char]] = 1.
        if t > 0:
            # decoder_target_data will be ahead by one timestep
            # and will not include the start character.
            # igone t=0 and start t=1, means
            decoder_target_data[i, t - 1, target_token_index[char]] = 1.

3、网络搭建

编码器搭建

# Define an input sequence and process it.
# input prodocts keras tensor, to fit keras model!
# 1x73 vector
# encoder_inputs is a 1x73 tensor!
encoder_inputs = Input(shape=(None, num_encoder_tokens))

# units=256, return the last state in addition to the output
encoder_lstm = LSTM((latent_dim), return_state=True)

# LSTM(tensor) return output, state-history, state-current
encoder_outputs, state_h, state_c = encoder_lstm(encoder_inputs)

# We discard `encoder_outputs` and only keep the states.
encoder_states = [state_h, state_c]

解码器搭建

# Set up the decoder, using `encoder_states` as initial state.
decoder_inputs = Input(shape=(None, num_decoder_tokens))

# We set up our decoder to return full output sequences,
# and to return internal states as well. We don't use the
# return states in the training model, but we will use them in inference.
decoder_lstm = LSTM((latent_dim), return_sequences=True, return_state=True)

# obtain output
decoder_outputs, _, _ = decoder_lstm(decoder_inputs,initial_state=encoder_states)

整体网络模型

# dense 2580x1 units full connented layer
decoder_dense = Dense(num_decoder_tokens, activation='softmax')

# why let decoder_outputs go through dense ?
decoder_outputs = decoder_dense(decoder_outputs)

# Define the model that will turn, groups layers into an object
# with training and inference features
# `encoder_input_data` & `decoder_input_data` into `decoder_target_data`
# model(input, output)
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)

# Run training
# compile -> configure model for training
model.compile(optimizer='rmsprop', loss='categorical_crossentropy')
# model optimizsm

4、启动训练

model.fit([encoder_input_data, decoder_input_data],
          decoder_target_data,
          batch_size=batch_size,
          epochs=epochs,
          validation_split=0.2)

可在控制台看到训练的相关信息:
【如何训练一个中英翻译模型】LSTM机器翻译模型训练与保存(二),如何训练一个中英翻译模型,lstm,机器翻译,人工智能

5、模型保存

首先,保存权重文件
这里将解码器与编码器分别保存下来

encoder_model = Model(encoder_inputs, encoder_states)
# tensor 73x1
decoder_state_input_h = Input(shape=(latent_dim,))
# tensor 73x1
decoder_state_input_c = Input(shape=(latent_dim,))
# tensor 146x1
decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
# lstm
decoder_outputs, state_h, state_c = decoder_lstm(decoder_inputs, initial_state=decoder_states_inputs)
#
decoder_states = [state_h, state_c]
#
decoder_outputs = decoder_dense(decoder_outputs)
#
decoder_model = Model(
    [decoder_inputs] + decoder_states_inputs,
    [decoder_outputs] + decoder_states)
encoder_model.save('encoder_model.h5')
decoder_model.save('decoder_model.h5')

其次,保存编码文件

# 将 input_characters保存为 input_words.txt 文件
with open('input_words.txt', 'w', newline='') as f:
    for char in input_characters:
        if char == '\t':
            f.write('\\t\n')
        elif char == '\n':
            f.write('\\n\n')
        else:
            f.write(char + '\n')


# 将 target_characters保存为 target_words.txt 文件
with open('target_words.txt', 'w', newline='') as f:
    for char in target_characters:
        if char == '\t':
            f.write('\\t\n')
        elif char == '\n':
            f.write('\\n\n')
        else:
            f.write(char + '\n')

最后,保存一下配置文件:

import json

# 将数据保存到JSON文件
data = {
    "max_encoder_seq_length": max_encoder_seq_length,
    "max_decoder_seq_length": max_decoder_seq_length
}

with open('config.json', 'w') as file:
    json.dump(data, file)

所以保存下来我们可以看到一共有以下几个文件,这几个文件要保存好,我们后面的文章讲到部署的时候要用到:
【如何训练一个中英翻译模型】LSTM机器翻译模型训练与保存(二),如何训练一个中英翻译模型,lstm,机器翻译,人工智能

6、模型加载与推理

加载模型权重

from keras.models import load_model
encoder_model = load_model('encoder_model.h5')
decoder_model = load_model('decoder_model.h5')

推理模型搭建

# something readable.
reverse_input_char_index = dict(
    (i, char) for char, i in input_token_index.items())
reverse_target_char_index = dict(
    (i, char) for char, i in target_token_index.items())

def decode_sequence(input_seq):
    # Encode the input as state vectors.
    states_value = encoder_model.predict(input_seq)

    # Generate empty target sequence of length 1.
    target_seq = np.zeros((1, 1, num_decoder_tokens))
    # Populate the first character of target sequence with the start character.
    target_seq[0, 0, target_token_index['\t']] = 1.
    # this target_seq you can treat as initial state

    # Sampling loop for a batch of sequences
    # (to simplify, here we assume a batch of size 1).
    stop_condition = False
    decoded_sentence = ''
    while not stop_condition:
        output_tokens, h, c = decoder_model.predict([target_seq] + states_value)

        # Sample a token
        # argmax: Returns the indices of the maximum values along an axis
        # just like find the most possible char
        sampled_token_index = np.argmax(output_tokens[0, -1, :])
        # find char using index
        sampled_char = reverse_target_char_index[sampled_token_index]
        # and append sentence
        decoded_sentence += sampled_char

        # Exit condition: either hit max length
        # or find stop character.
        if (sampled_char == '\n' or len(decoded_sentence) > max_decoder_seq_length):
            stop_condition = True

        # Update the target sequence (of length 1).
        # append then ?
        # creating another new target_seq
        # and this time assume sampled_token_index to 1.0
        target_seq = np.zeros((1, 1, num_decoder_tokens))
        target_seq[0, 0, sampled_token_index] = 1.

        # Update states
        # update states, frome the front parts
        states_value = [h, c]

    return decoded_sentence

进行模型推理


for seq_index in range(100,200):
    # Take one sequence (part of the training set)
    # for trying out decoding.
    input_seq = encoder_input_data[seq_index: seq_index + 1]
    decoded_sentence = decode_sequence(input_seq)
    print('-')
    print('Input sentence:', input_texts[seq_index])
    print('Decoded sentence:', decoded_sentence)

可以看到输出:
【如何训练一个中英翻译模型】LSTM机器翻译模型训练与保存(二),如何训练一个中英翻译模型,lstm,机器翻译,人工智能

以上的代码可在kaggle上运行:how-to-train-a-chinese-to-english-translator-ii文章来源地址https://www.toymoban.com/news/detail-606995.html

到了这里,关于【如何训练一个中英翻译模型】LSTM机器翻译模型训练与保存(二)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于transformer的Seq2Seq机器翻译模型训练、预测教程

    机器翻译(Machine Translation, MT)是一类将某种语言(源语言,source language)的句子 x x x 翻译成另一种语言(目标语言,target language)的句子 y y y 的任务。机器翻译的相关研究早在上世纪50年代美苏冷战时期就开始了,当时的机器翻译系统是基于规则的,利用两种语言的单词、

    2024年02月03日
    浏览(39)
  • 【GPT】文本生成任务(生成摘要、文本纠错、机器翻译等的模型微调)

    NLG:自然语言生成任务,很多NLP任务可以被描述为NLG任务,如经典的T5模型(text to text transfer transformer模型)就是NLG模型,如文本纠错任务,输出正确的文本描述、智能问答根据一定背景进行推理,然后回答。 主要分为三种: 抽取式摘要:从原文档中提取现成的句子作为摘要

    2023年04月26日
    浏览(53)
  • 【2022吴恩达机器学习课程视频翻译笔记】3.2线性回归模型-part-2

    Let’s look in this video at the process of how supervised learning works. Supervised learning algorithm will input a dataset and then what exactly does it do and what does it output? Let’s find out in this video. Recall that a training set in supervised learning includes both the input features, such as the size of the house and also the output targets,

    2024年02月12日
    浏览(35)
  • OJ# 376 机器翻译

    题目描述 ​ 小李的电脑上安装了一个机器翻译软件,他经常用这个软件来翻译英语文章。 ​这个翻译软件的原理很简单,它只是从头到尾,依次将每个英文单词用对应的中文含义来替换。对于每个英文单词,软件会先在内存中查找这个单词的中文含义, 如果内存中有,软件

    2024年02月11日
    浏览(246)
  • NLP——Translation 机器翻译

    基于统计的机器翻译任务通常通过翻译模型(Translation Model)和语言模型(Language Model)的结合来学习更强大的翻译模型。这种结合被称为统计机器翻译(SMT)。 翻译模型(Translation Model):翻译模型主要关注如何将源语言句子翻译成目标语言句子。它使用双语语料库进行训练

    2024年02月09日
    浏览(91)
  • 机器学习&&深度学习——机器翻译(序列生成策略)

    👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er 🌌上期文章:机器学习深度学习——seq2seq实现机器翻译(详细实现与原理推导) 📚订阅专栏:机器学习深度学习 希望文章对你们有所帮助 上一节已经实现了机器翻译的模型训练和预测,逐个预测输出序列, 直

    2024年02月12日
    浏览(37)
  • 几个nlp的小任务(机器翻译)

    2024年02月10日
    浏览(37)
  • 如何训练一个模型

    在自动驾驶中,视觉感知模型负责从摄像头捕获的图像中提取关键信息,如车道线、交通标志、其他车辆、行人等。训练视觉感知模型通常基于深度学习技术,尤其是卷积神经网络(CNN)。以下是训练视觉感知模型的一般步骤: 数据收集 :首先需要收集大量的驾驶场景图像

    2024年02月10日
    浏览(53)
  • 什么是自然语言处理的机器翻译?

    机器翻译(Machine Translation,MT)是一种自然语言处理技术,旨在将一种语言的文本自动翻译成另一种语言。机器翻译是自然语言处理领域的重要应用之一,它可以帮助人们在跨语言交流、文档翻译和信息检索等方面更加便捷和高效。本文将详细介绍自然语言处理的机器翻译。

    2024年02月05日
    浏览(39)
  • 为什么需要多语言并行机器翻译?

    随着全球化的加速和不同语言之间的交流需求不断增长,多语言机器翻译(Multilingual Parallel Machine Translation)成为一个备受关注的领域。传统上,机器翻译系统主要集中于一对特定语言之间的翻译,但这种单一语言对的模式在面对多语言环境时存在一些挑战。因此,多语言并

    2024年02月12日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包