Kafka 实时处理Stream与Batch的对比分析

这篇具有很好参考价值的文章主要介绍了Kafka 实时处理Stream与Batch的对比分析。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、简介

1. Kafka的定义和特点

Apache Kafka是一个高吞吐量、分布式、基于发布/订阅模式的消息队列,被大部分公司用做实时数据处理平台。它主要有以下特点:

  • 高性能:Kafka采用了Zero-Copy技术和PageCache机制,在保证数据可靠性的同时提高了性能表现;
  • 可扩展性:Kafka可以很容易的在集群中添加或删除Broker,可以透明地为应用程序提供额外的容量,而不需要修改代码;
  • 持久化:消息被持久化到磁盘上,保证数据安全性;
  • 低延迟:Kafka支持线性读写速率,在多副本的情况下,仍能够实现低延迟的数据传输。

2. Kafka实时处理基础架构

Kafka的架构分为producer、broker和consumer。Producer是数据的生产者,通过向Kafka的topic发布消息;Broker就是扮演了Kafka集群中的中心角色,负责消息的存储和转发;Consumer则用于读取Broker上的消息。

二、Stream和Batch

1. Stream和Batch的区别

Stream和Batch是两种不同的数据处理方式,主要区别在于数据处理的时间和方式。Batch是一种离线数据处理模式,对于数据的处理是批量进行的,一般采用Hadoop MapReduce、Spark等框架进行实现;Stream是一种在线数据处理模式,对于数据的处理是实时进行的,并对数据的时效性有更高的要求。

2. 对比Stream和Batch的优缺点

Stream的优缺点

优点:

  • 实时性强:Stream对数据的处理是实时的,只要有数据产生,就可以进行处理;
  • 灵活性高:对于传输过程中可能出现的数据丢失或延迟等问题,Stream可以根据自身需要进行调整;
  • 效率高:由于实时处理,能够大大提高数据处理效率。

缺点:

  • 开发复杂度高:Stream需要考虑到复杂的流控、异常处理和依赖管理,需要在设计、实现和测试时付出较大的投入;
  • 成本高:由于实时性和复杂度高,Stream的开发和运维成本也较高,这一点需要重点考虑。

Batch的优缺点

优点:

  • 稳定性高:数据源基本上是固定的,不像Stream那样可以源源不断地产生新数据,因此稳定性方面会更好;
  • 开发简单:Batch相对Stream对开发者友好,容易学习和使用;
  • 数据质量高:批量数据处理可以使得数据质量更好。

缺点:

  • 响应时间慢:Batch是对于历史数据分析,处理时间通常是较长的;
  • 扩展性差:由于需要进行大量的计算和IO操作,对机器的性能和存储空间都有着较高的要求;
  • 数据时效性差:由于Batch是离线处理,对于数据的时效性有一定的影响,可能会产生数据丢失等问题。

三、使用场景

1. 使用场景对比

Batch使用场景

Batch主要用于离线处理(大数据、批量数据),通常情况下,它通过以下步骤来进行数据处理:数据读取 -> 数据处理 -> 数据存储。Batch的处理过程是有限的,数据一次性处理完后,程序关闭并退出。

在实际应用中,Batch主要用于数据清洗、ETL(Extract, Transform and Load)、离线统计、报表生成等工作。

Stream使用场景

Stream主要用户实时处理(流式数据),流式数据可以以无穷的方式源源不断地产生,并且需要实时处理,即边生成,边处理,数据产生和处理的时间差很小,秒级别的消息,毫秒级别的响应,要求高可用、低延迟、高吞吐和精准计算。

在实际应用中,Stream主要用于在线数据处理、视频监控、实时推荐、实时日志分析等工作。

2. 如何选择Stream和Batch

在选择Stream和Batch时,需要根据功能要求和场景需求进行选择,对于要求实时性强、延迟低的场景,应该选择Stream。而对于要求处理大批量数据、统计分析等场景,则应该选择Batch。

四、底层技术实现分析

1. Stream技术实现

Stream基于消息队列,数据产生后通过消息队列将数据传递到处理系统中,系统对消息队列中的数据进行实时处理,处理完后将结果存储在数据库中。

在具体实现上,Stream可以使用Kafka、RabbitMQ等消息队列来传递数据,同时借助Flume、Logstash等数据采集框架来消费数据,使用Storm、Spark Streaming等流式计算框架对数据进行实时处理。

2. Batch技术实现

Batch一般使用Hadoop等分布式计算框架来进行数据处理,通过MapReduce等分布式计算模型来实现数据的批量处理。在具体实现上,Batch可以通过自定义Job类继承InpuFormat类,实现数据读取;通过Map、Reduce方法实现数据处理和计算;最终将结果输出到HDFS、数据库等存储系统中。

五、性能对比

1. 测试环境简介

本次测试使用的环境如下:

  • 操作系统:Windows 10
  • 处理器:Intel® Core™ i5-8250U CPU @ 1.60GHz 1.80GHz
  • 内存:8.00GB
  • 数据库:MySQL 8.0.26
  • 数据量:100万条数据

2. 性能测试结果

针对上述测试环境,我们进行了Stream和Batch的性能测试,并得到了以下结果:

  • Stream性能测试耗时约:30分钟
  • Batch性能测试耗时约:2小时

可以看出,在相同的数据量下,Stream的处理效率比Batch高很多。

3. 对比性能的原因分析

Stream比Batch的效率高是有原因的。Stream基于事件触发,当一个事件(如新数据到来)到达时,Stream可以立即处理该事件,而不需要等待所有数据都到达后再进行处理。这使得Stream处理大量的实时事件时更加高效。

而Batch则需要在所有数据到达后进行处理。尽管Batch可以在单个操作中处理大量的数据,但它需要等待所有数据都到达后才能进行处理,这会导致较长的等待时间和延迟。

因此,在需要实时处理事件的场景下,Stream更为适合。而如果只需要一次性处理大量数据,则Batch可能更为适合。文章来源地址https://www.toymoban.com/news/detail-607032.html

到了这里,关于Kafka 实时处理Stream与Batch的对比分析的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数据平台的实时处理:Streaming和Apache Kafka

    随着数据的增长和数据处理的复杂性,实时数据处理变得越来越重要。实时数据处理是指在数据产生时或者数据产生后的很短时间内对数据进行处理的技术。这种技术在各个领域都有广泛的应用,如实时推荐、实时监控、实时分析、实时语言翻译等。 在实时数据处理中,St

    2024年04月14日
    浏览(40)
  • 解密Kafka主题的分区策略:提升实时数据处理的关键

    大家好,我是哪吒。 Kafka几乎是当今时代背景下数据管道的首选,无论你是做后端开发、还是大数据开发,对它可能都不陌生。开源软件Kafka的应用越来越广泛。 面对Kafka的普及和学习热潮,哪吒想分享一下自己多年的开发经验,带领读者比较轻松地掌握Kafka的相关知识。 上

    2024年02月05日
    浏览(40)
  • 利用Kafka实现数据吞吐量更高的实时日志处理

    Kafka是一种高吞吐量、分布式、可扩展、无中心化的消息引擎,最初由LinkedIn公司开发,后来成为了Apache的一个顶级项目。Kafka使用类别解耦的方式将消息发送者和消息接受者进行解耦合,支持发布/订阅和点对点式的消息传递机制,可满足多种场景下的数据传输需求。 Kafka具有

    2024年02月09日
    浏览(38)
  • 流式计算中的多线程处理:如何使用Kafka实现高效的实时数据处理

    作者:禅与计算机程序设计艺术 Apache Kafka 是 Apache Software Foundation 下的一个开源项目,是一个分布式的、高吞吐量的、可扩展的消息系统。它最初由 LinkedIn 开发并于 2011 年发布。与其他一些类似产品相比,Kafka 有着更强大的功能和活跃的社区支持。因此,越来越多的人开始使

    2024年02月12日
    浏览(63)
  • Kafka的重要组件,谈谈流处理引擎Kafka Stream

    上手第一关,手把手教你安装kafka与可视化工具kafka-eagle Kafka是什么,以及如何使用SpringBoot对接Kafka 架构必备能力——kafka的选型对比及应用场景 Kafka存取原理与实现分析,打破面试难关 防止消息丢失与消息重复——Kafka可靠性分析及优化实践 我们前面介绍了很多kafka本身的特

    2024年02月05日
    浏览(23)
  • 【大数据技术】Spark+Flume+Kafka实现商品实时交易数据统计分析实战(附源码)

    需要源码请点赞关注收藏后评论区留言私信~~~ 1)Kafka 是一个非常通用的系统,你可以有许多生产者和消费者共享多个主题Topics。相比之下,Flume是一个专用工具被设计为旨在往HDFS,HBase等发送数据。它对HDFS有特殊的优化,并且集成了Hadoop的安全特性。如果数据被多个系统消

    2024年02月03日
    浏览(49)
  • 大数据职业技能大赛样题(数据采集与实时计算:使用Flink处理Kafka中的数据)

           编写Scala代码,使用Flink消费Kafka中Topic为order的数据并进行相应的数据统计计算(订单信息对应表结构order_info,订单详细信息对应表结构order_detail(来源类型和来源编号这两个字段不考虑,所以在实时数据中不会出现),同时计算中使用order_info或order_detail表中create_ti

    2024年03月24日
    浏览(52)
  • Kafka与Flume的对比分析

    Kafka是一个分布式、高吞吐量的消息队列,在架构上主要由生产者、消费者和中间件组成,其中: 生产者:将数据发布到指定的topic,同时支持数据压缩、异步发送等特性 消费者:从指定的topic订阅数据,并能够实现数据的自动负载均衡、复制和容错等功能 中间件:实现了数

    2024年02月11日
    浏览(32)
  • Spark+Kafka构建实时分析Dashboard

    Spark+Kafka构建实时分析Dashboard【林子雨】 官方实验步骤:https://dblab.xmu.edu.cn/post/spark-kafka-dashboard/ 前几天刚做完这个实验,学了不少知识,也遇到了不少问题,在这里记录一下自己的实验过程,与小伙伴们一起探讨下。 案例概述(详情见官网) (1)安装Spark 详细步骤见官网

    2024年02月13日
    浏览(44)
  • 如何使用Apache Kafka和Storm实时处理大规模的Twitter数据集 ?4 Streaming Large Collections of Twitter Data in RealTime

    作者:禅与计算机程序设计艺术 Twitter是一个巨大的社交媒体网站,每天都有数以亿计的用户参与其中。许多企业利用其数据的价值已经成为众矢之的。比如,广告、营销、市场调研等方面都依赖于Twitter数据。 Streaming Large Collections of Twitter Data in Real-Time with Apache Kafka and Stor

    2024年02月07日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包