Network Dissection 论文阅读笔记

这篇具有很好参考价值的文章主要介绍了Network Dissection 论文阅读笔记。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1. 简介

  这是CVPR2017一篇有关深度学习可解释性研究的文章,作者通过评估单个隐藏神经元(unit)与一系列语义概念(concept)间的对应关系,来量化 CNN 隐藏表征的可解释性。

2. 网络刨析

2.1 深度视觉表征的可解释性的测量步骤

  1. 确定一套广泛的人类标记的视觉概念集合。
  2. 收集隐藏神经元对已知概念的响应。
  3. 量化(隐藏神经元,概念)的映射方式。

2.2 数据集

  作者建立了一个完善的测试数据集,叫做Broden(Broadly and Densely Labeled Dataset),每张图片都在场景、物体、材质、纹理、颜色等层面有pixel-wise的标定。Broden 数据集中的样本示例如下图所示。
Network Dissection 论文阅读笔记,深度学习,论文阅读,深度学习,可解释性

2.3 可解释神经元评分

  将该数据集中的每一张图喂给需要分析的网络,拿到每个feature map 上的响应结果,进一步分析该层feature map对应的语义关系,归纳结果。整体流程如下图所示。
Network Dissection 论文阅读笔记,深度学习,论文阅读,深度学习,可解释性

  对于Broden数据集中的每个输入图像 x x x,收集每个内部卷积核 k k k 的激活映射 A k ( x ) A_k (x) Ak(x)。然后计算了单个卷积单元激活量的分布情况 a k a_k ak。对于每个单元 k k k ,在数据集中的激活映射的每个空间位置上,通过 P ( a k > T k ) = 0.005 P(a_k>T_k)=0.005 P(ak>Tk)=0.005 确定上分位数 T k T_k Tk
  为了比较低分辨率单元的激活映射与输入分辨率注释掩码 L c L_c Lc 的某些概念 c c c,使用双线性插值将激活特征图 A k ( x ) A_k(x) Ak(x) 放大到输入掩码分辨率 S k ( x ) S_k(x) Sk(x),将插值固定在每个单元的接受域的中心。
  然后将 S k ( x ) S_k(x) Sk(x) 按阈值进行一个二进值分割: M k ( x ) ≡ S k ( x ) ≥ T k M_k(x)≡S_k(x)≥T_k Mk(x)Sk(x)Tk,选择激活特征图超过阈值 T k T_k Tk 的所有区域。通过对每对 ( k , c ) (k,c) (k,c) 计算交集 M k ( x ) ∩ L c ( x ) M_k(x)∩L_c(x) Mk(x)Lc(x),对数据集中的每个概念 c c c 进行评估。
  每个单元 k k k 作为概念 c c c 的分割得分通过以下交并比公式计算:
I o U k , c = ∑ ∣ M k ( x ) ∩ L c ( x ) ∣ ∑ ∣ M k ( x ) ∪ L c ( x ) ∣ IoU_{k,c} = \frac{\sum|M_k(x) ∩ L_c(x)|}{\sum|M_k(x) ∪ L_c(x)|} IoUk,c=Mk(x)Lc(x)Mk(x)Lc(x)
这里 ∣ ⋅ ∣ |\cdot| 是一个集合的基数。因为数据集包含一些类型的标签,这些标签不存在在某些输入子集上,仅仅在图像子集上至少有一个与 c c c 相同的概念标签时计算求和。 I o U k , c IoU_{k,c} IoUk,c 的值是单元 k k k 检测概念 c c c 的精度;如果 I o U k , c IoU_{k,c} IoUk,c 超过一个阈值(文中设置为0.04),我们考虑一个单元 k k k 作为概念 c c c 的检测器。请注意,一个单元可能是多个概念的检测器(一个概念也可能被多个单元检测到);为了进行分析,我们选择了排名靠前的标签。为了量化一个层的可解释性,我们计算检测唯一概念单元的数量,称之为唯一探测器的数量 (number of unique detectors)。

3. 实验

3.1 对解释的人类评价

Network Dissection 论文阅读笔记,深度学习,论文阅读,深度学习,可解释性
  在最底层,Broden中可用的低级颜色和纹理概念仅足以匹配少数单元的良好解释。人类的一致性在conv5中也最高,这表明人类更善于识别和同意高级的视觉概念,如物体和部分,而不是出现在较下层的形状和纹理。

3.2 Measurement of Axis-Aligned Interpretability

  为了探究网络的可解释性(Interpretability)是否与单元(units)的排列分布有关,作者对于某一层的所有单元进行random linear combination(下图Q),也即打乱该排布方式,而后将打乱的次序归位(下图 Q − 1 Q^{-1} Q1),观察concept的变化情况得到结果。具体如下图所示:
Network Dissection 论文阅读笔记,深度学习,论文阅读,深度学习,可解释性
其中,rotation的大小代表了random Q的程度大小,而打乱这些units的排布并不会对于网络的最终输出产生影响,同时也不会改变该网络的表达能力(discriminative power)。

Network Dissection 论文阅读笔记,深度学习,论文阅读,深度学习,可解释性
  可以从结果中发现,随着rotation的逐渐变大,number of unique detectors开始急剧减少,因此CNN网络的可解释性是受到unit的排序的影响的。

3.3 理解层概念

Network Dissection 论文阅读笔记,深度学习,论文阅读,深度学习,可解释性
  证实直觉,color和texture概念在较低的conv1和conv2占主导地位,而conv5出现了更多的object和part探测器。

3.4 网络架构和监督

Network Dissection 论文阅读笔记,深度学习,论文阅读,深度学习,可解释性
  在网络架构方面,我们发现可解释性ResNet > VGG > GoogLeNet > AlexNet。更深层次的架构似乎允许更大的可解释性。

Network Dissection 论文阅读笔记,深度学习,论文阅读,深度学习,可解释性
  自监督模型创建了许多纹理检测器,但相对较少的对象检测器;显然,在大型注释数据集上,自监督学习任务可解释性要比监督学习任务弱得多。

3.5 训练条件 vs 可解释性

Network Dissection 论文阅读笔记,深度学习,论文阅读,深度学习,可解释性
  上图绘制了不同训练迭代下基线模型快照的可解释性。我们可以看到,object检测器和part检测器在大约10,000次迭代中开始出现(每次迭代处理256幅图像)。我们在训练期间我们没有发现不同概念类别之间转换的证据。例如,conv5中的单元在成为object或part检测器之前不会变成texture或material检测器。
Network Dissection 论文阅读笔记,深度学习,论文阅读,深度学习,可解释性
  上图中repeat1,repeat2,repeat3代表三种不同的权重初始化方式,结果表示:

  1. 比较不同的随机初始化,模型在唯一检测器数和总检测器数方面都收敛于相似的可解释性水平;
  2. 对于没有Dropout的网络,出现的texture检测器更多,但出现的object检测器更少;
  3. 批处理规范化似乎显著降低了可解释性。

3.6 网络的分类能力 vs 可解释性

Network Dissection 论文阅读笔记,深度学习,论文阅读,深度学习,可解释性
  从上图中可以看到,分类能力和可解释性存在正相关关系。

3.7 层宽度 vs 可解释性

Network Dissection 论文阅读笔记,深度学习,论文阅读,深度学习,可解释性
  conv5的卷积核从256增加到768,在验证集上具有与标准AlexNet相似的分类精度,但是在conv5上出现了很多独立检测器和检测器;我们还将conv5的单元数量增加到1024和2048,但独立概念的数量没有进一步显著增加。这可能表明AlexNet分离解释因素的能力有限;或者它可能表明限制解开概念的数量有助于解决场景分类的主要任务。

4. 问答

  在以下参考内容[2]、[3]、[4]中记录了一些作者本人回答的问题,可以帮助更好理解文章。

参考

[1] Network Dissection:
Quantifying Interpretability of Deep Visual Representations
[2] 论文笔记:《Network Dissection: Quantifying Interpretability of Deep Visual Representations》–CSDN
[3] 从深度神经网络本质的视角解释其黑盒特性–知乎
[4] 知乎大神周博磊:用“Network Dissection”分析卷积神经网络的可解释性文章来源地址https://www.toymoban.com/news/detail-607037.html

到了这里,关于Network Dissection 论文阅读笔记的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Low-Light Image Enhancement via Stage-Transformer-Guided Network 论文阅读笔记

    这是TCSVT 2023年的一篇暗图增强的论文 文章的核心思想是,暗图有多种降质因素,单一stage的model难以实现多降质因素的去除,因此需要一个multi-stage的model,文章中设置了4个stage。同时提出了用预设query向量来代表不同的降质因素,对原图提取的key 和value进行注意力的方法。

    2024年02月16日
    浏览(35)
  • 【论文阅读笔记】Bicubic++: Slim, Slimmer, Slimmest Designing an Industry-Grade Super-Resolution Network

    论文地址:https://arxiv.org/pdf/2305.02126.pdf   本文提出的实时性、轻量级的图像超分网络,名为 Bicubic++ 。   Bicubic++的网络结构,首先学习了图像的快速可逆降级和低分辨率特征,以减少计算量。   然后作者还设计了一个训练管道,可以在不使用幅度或梯度(magnitude or

    2024年04月17日
    浏览(27)
  • 论文阅读——基于深度学习智能垃圾分类

    B. Fu, S. Li, J. Wei, Q. Li, Q. Wang and J. Tu, “A Novel Intelligent Garbage Classification System Based on Deep Learning and an Embedded Linux System,” in IEEE Access, vol. 9, pp. 131134-131146, 2021, doi: 10.1109/ACCESS.2021.3114496. 垃圾数量的急剧增加和垃圾中物质的复杂多样性带来了严重的环境污染和资源浪费问题。回收

    2024年02月11日
    浏览(31)
  • 【论文阅读笔记】RAAGR2-Net: A brain tumor segmentation network using parallel processing of multiple spatial

    Rehman M U, Ryu J, Nizami I F, et al. RAAGR2-Net: A brain tumor segmentation network using parallel processing of multiple spatial frames[J]. Computers in Biology and Medicine, 2023, 152: 106426.【开放源码】 【论文核心思想概述】 本文介绍了一种名为RAAGR2-Net的新型脑肿瘤分割网络,这是一个基于编码器-解码器架构,用

    2024年02月03日
    浏览(29)
  • 【目标检测论文阅读笔记】FE-YOLOv5: Feature enhancement network based on YOLOv5 for small object detection

             由于其固有的特性, 小目标在多次下采样后的特征表示较弱 ,甚至在背景中消失 。 FPN简单的特征拼接  没有充分利用多尺度信息 , 在信息传递中引入了不相关的上下文 ,进一步降低了小物体的检测性能 。为了解决上述问题,我们提出了简单但有效的 FE-YOLO

    2024年02月07日
    浏览(34)
  • 【论文阅读】基于深度学习的时序预测——FEDformer

    系列文章链接 论文一:2020 Informer:长时序数据预测 论文二:2021 Autoformer:长序列数据预测 论文三:2022 FEDformer:长序列数据预测 论文四:2022 Non-Stationary Transformers:非平稳性时序预测 论文五:2022 Pyraformer:基于金字塔图结构的时序预测 论文六:2023 Crossformer:多变量时序预

    2024年02月13日
    浏览(27)
  • 【论文阅读】基于深度学习的时序预测——Autoformer

    系列文章链接 论文一:2020 Informer:长时序数据预测 论文二:2021 Autoformer:长序列数据预测 论文三:2022 FEDformer:长序列数据预测 论文四:2022 Non-Stationary Transformers:非平稳性时序预测 论文五:2022 Pyraformer:基于金字塔图结构的时序预测 论文六:2023 Crossformer:多变量时序预

    2024年02月13日
    浏览(26)
  • 【论文阅读】基于深度学习的时序预测——Crossformer

    系列文章链接 论文一:2020 Informer:长时序数据预测 论文二:2021 Autoformer:长序列数据预测 论文三:2022 FEDformer:长序列数据预测 论文四:2022 Non-Stationary Transformers:非平稳性时序预测 论文五:2022 Pyraformer:基于金字塔图结构的时序预测 论文六:2023 Crossformer:多变量时序预

    2024年02月13日
    浏览(32)
  • 【论文阅读】基于深度学习的时序预测——Pyraformer

    系列文章链接 论文一:2020 Informer:长时序数据预测 论文二:2021 Autoformer:长序列数据预测 论文三:2022 FEDformer:长序列数据预测 论文四:2022 Non-Stationary Transformers:非平稳性时序预测 论文五:2022 Pyraformer:基于金字塔图结构的时序预测 论文六:2023 Crossformer:多变量时序预

    2024年02月13日
    浏览(28)
  • 【论文阅读】基于深度学习的时序异常检测——TransAD

    系列文章链接 数据解读参考:数据基础:多维时序数据集简介 论文一:2022 Anomaly Transformer:异常分数预测 论文二:2022 TransAD:异常分数预测 论文三:2023 TimesNet:基于卷积的多任务模型 论文链接:TransAD.pdf 代码库链接:https://github.com/imperial-qore/TranAD 这篇文章是基于多变量数

    2024年02月14日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包