分类、回归常用损失函数

这篇具有很好参考价值的文章主要介绍了分类、回归常用损失函数。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

分类:

交叉熵损失函数(Cross-entropy loss function)

KL散度、交叉熵损失函数、nn.CrossEntropyLoss()_HealthScience的博客-CSDN博客

权重交叉熵损失函数(Weighted cross-entropy loss function)

BCEWithLogitsLoss

[Pytorch] BCELoss和BCEWithLogitsLoss(Sigmoid-BCELoss合成为一步)_HealthScience的博客-CSDN博客

回归:

均方差损失 Mean Squared Error Loss(MSE)

平均绝对误差损失 Mean Absolute Error Loss(MAE)

MAE 与 MSE 的区别:MAE 和 MSE 作为损失函数的主要区别是:MSE 损失相比于 MAE 通常可以更快的收敛,但 MAE 损失对于异常值更加健壮,即更加不易受到异常值影响。

L1损失(MAE)、L2损失(MSE)_HealthScience的博客-CSDN博客文章来源地址https://www.toymoban.com/news/detail-607068.html

到了这里,关于分类、回归常用损失函数的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【机器学习】P2 线性回归、损失函数与梯度下降

    线性回归简单的说就是线性函数; 线性回归属于机器学习 回归问题; 在线性回归建立的线性关系的模型中,假设目标变量和自变量之间存在一种线性关系,模型的目标是找到最佳的拟合线,是的模型对于未知的数据能够进行最准确的预测; 线性回归模型的一般形式为: y

    2023年04月08日
    浏览(42)
  • 机器学习分类,损失函数中为什么要用Log,机器学习的应用

    目录 损失函数中为什么要用Log 为什么对数可以将乘法转化为加法? 机器学习(Machine Learning) 机器学习的分类 监督学习 无监督学习 强化学习 机器学习的应用 应用举例:猫狗分类 1. 现实问题抽象为数学问题 2. 数据准备 3. 选择模型 4. 模型训练及评估 5.预测结果 推荐阅读

    2024年02月11日
    浏览(45)
  • pytorch-损失函数-分类和回归区别

    torch.nn 库和 torch.nn.functional库的区别 torch.nn 库:这个库提供了许多预定义的层,如全连接层(Linear)、卷积层(Conv2d)等,以及一些损失函数(如MSELoss、CrossEntropyLoss等)。这些层都是类,它们都继承自 nn.Module ,因此可以很方便地集成到自定义的模型中。 torch.nn 库中的层都

    2024年02月05日
    浏览(47)
  • [学习笔记] [机器学习] 10. 支持向量机 SVM(SVM 算法原理、SVM API介绍、SVM 损失函数、SVM 回归、手写数字识别)

    视频链接 数据集下载地址:无需下载 学习目标: 了解什么是 SVM 算法 掌握 SVM 算法的原理 知道 SVM 算法的损失函数 知道 SVM 算法的核函数 了解 SVM 算法在回归问题中的使用 应用 SVM 算法实现手写数字识别器 学习目标: 了解 SVM 算法的定义 知道软间隔和硬间隔 在很久以前的

    2024年02月09日
    浏览(91)
  • 大数据的常用算法(分类、回归分析、聚类、关联规则、神经网络方法、web数据挖掘)

    在大数据时代,数据挖掘是最关键的工作。大数据的挖掘是从海量、不完全的、有噪声的、模糊的、随机的大型数据库中发现隐含在其中有价值的、潜在有用的信息和知识的过程,也是一种决策支持过程。其主要基于人工智能,机器学习,模式学习,统计学等。通过对大数据

    2024年02月09日
    浏览(63)
  • 第2篇 机器学习基础 —(2)分类和回归

    前言: Hello大家好,我是小哥谈。 机器学习中的分类和回归都是监督学习的问题。分类问题的目标是将输入数据分为不同的类别,而回归问题的目标是预测一个连续的数值。分类问题输出的是物体所属的类别,而回归问题输出的是数值。本节课就简单介绍下分类和回归的基本

    2024年02月08日
    浏览(29)
  • 机器学习基础之《回归与聚类算法(4)—逻辑回归与二分类(分类算法)》

    一、什么是逻辑回归 1、逻辑回归(Logistic Regression)是机器学习中的一种分类模型,逻辑回归是一种分类算法,虽然名字中带有回归,但是它与回归之间有一定的联系。由于算法的简单和高效,在实际中应用非常广泛 2、叫回归,但是它是一个分类算法 二、逻辑回归的应用场

    2024年02月07日
    浏览(55)
  • python机器学习(三)特征预处理、鸢尾花案例--分类、线性回归、代价函数、梯度下降法、使用numpy、sklearn实现一元线性回归

    数据预处理的过程。数据存在不同的量纲、数据中存在离群值,需要稳定的转换数据,处理好的数据才能更好的去训练模型,减少误差的出现。 标准化 数据集的标准化对scikit-learn中实现的大多数机器学习算法来说是常见的要求,很多案例都需要标准化。如果个别特征或多或

    2024年02月16日
    浏览(46)
  • 机器学习5:基于线性回归理解减少“损失”的方法

    在上节《机器学习4:基本术语》中,笔者介绍了“损失(Loss)”的定义,在训练模型时,减少损失(Reducing Loss)是极为关键的,只有“损失”足够小的机器学习系统才有实用价值。 在本节中,笔者将基于线性回归(Linear Regression)来介绍减少损失的具体方法。 目录 1.线性回

    2024年02月11日
    浏览(47)
  • 【深度学习】分类损失函数解析

    在分类任务中,我们通常使用各种损失函数来衡量模型输出与真实标签之间的差异。有时候搞不清楚用什么,下面是几种常见的分类相关损失函数及其 解析,与代码示例 。 二元交叉熵损失(Binary Cross Entropy Loss,BCELoss): torch.nn.BCELoss() 是用于二元分类的损失函数。它将模型

    2024年02月09日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包