347. 前 K 个高频元素

这篇具有很好参考价值的文章主要介绍了347. 前 K 个高频元素。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

力扣题目链接

(opens new window)

给定一个非空的整数数组,返回其中出现频率前 k 高的元素。

示例 1:

  • 输入: nums = [1,1,1,2,2,3], k = 2
  • 输出: [1,2]

示例 2:

  • 输入: nums = [1], k = 1
  • 输出: [1]

提示:

  • 你可以假设给定的 k 总是合理的,且 1 ≤ k ≤ 数组中不相同的元素的个数。
  • 你的算法的时间复杂度必须优于 $O(n \log n)$ , n 是数组的大小。
  • 题目数据保证答案唯一,换句话说,数组中前 k 个高频元素的集合是唯一的。
  • 你可以按任意顺序返回答案。

这道题目主要涉及到如下三块内容:

  1. 要统计元素出现频率
  2. 对频率排序
  3. 找出前K个高频元素

首先统计元素出现的频率,这一类的问题可以使用map来进行统计。

然后是对频率进行排序,这里我们可以使用一种 容器适配器就是优先级队列

代码


/*Comparator接口说明:
 * 返回负数,形参中第一个参数排在前面;返回正数,形参中第二个参数排在前面
 * 对于队列:排在前面意味着往队头靠
 * 对于堆(使用PriorityQueue实现):从队头到队尾按从小到大排就是最小堆(小顶堆),
 *                                从队头到队尾按从大到小排就是最大堆(大顶堆)--->队头元素相当于堆的根节点
 * */
class Solution {
    //解法1:基于大顶堆实现
    public int[] topKFrequent1(int[] nums, int k) {
        Map<Integer,Integer> map = new HashMap<>();//key为数组元素值,val为对应出现次数
        for(int num:nums){
            map.put(num,map.getOrDefault(num,0)+1);
        }
        //在优先队列中存储二元组(num,cnt),cnt表示元素值num在数组中的出现次数
        //出现次数按从队头到队尾的顺序是从大到小排,出现次数最多的在队头(相当于大顶堆)
        PriorityQueue<int[]> pq = new PriorityQueue<>((pair1, pair2)->pair2[1]-pair1[1]);
        for(Map.Entry<Integer,Integer> entry:map.entrySet()){//大顶堆需要对所有元素进行排序
            pq.add(new int[]{entry.getKey(),entry.getValue()});
        }
        int[] ans = new int[k];
        for(int i=0;i<k;i++){//依次从队头弹出k个,就是出现频率前k高的元素
            ans[i] = pq.poll()[0];
        }
        return ans;
    }
    //解法2:基于小顶堆实现
    public int[] topKFrequent2(int[] nums, int k) {
        Map<Integer,Integer> map = new HashMap<>();//key为数组元素值,val为对应出现次数
        for(int num:nums){
            map.put(num,map.getOrDefault(num,0)+1);
        }
        //在优先队列中存储二元组(num,cnt),cnt表示元素值num在数组中的出现次数
        //出现次数按从队头到队尾的顺序是从小到大排,出现次数最低的在队头(相当于小顶堆)
        PriorityQueue<int[]> pq = new PriorityQueue<>((pair1,pair2)->pair1[1]-pair2[1]);
        for(Map.Entry<Integer,Integer> entry:map.entrySet()){//小顶堆只需要维持k个元素有序
            if(pq.size()<k){//小顶堆元素个数小于k个时直接加
                pq.add(new int[]{entry.getKey(),entry.getValue()});
            }else{
                if(entry.getValue()>pq.peek()[1]){//当前元素出现次数大于小顶堆的根结点(这k个元素中出现次数最少的那个)
                    pq.poll();//弹出队头(小顶堆的根结点),即把堆里出现次数最少的那个删除,留下的就是出现次数多的了
                    pq.add(new int[]{entry.getKey(),entry.getValue()});
                }
            }
        }
        int[] ans = new int[k];
        for(int i=k-1;i>=0;i--){//依次弹出小顶堆,先弹出的是堆的根,出现次数少,后面弹出的出现次数多
            ans[i] = pq.poll()[0];
        }
        return ans;
    }
}

简化版代码:

class Solution {
    public int[] topKFrequent(int[] nums, int k) {
        // 优先级队列,为了避免复杂 api 操作,pq 存储数组
        // lambda 表达式设置优先级队列从大到小存储 o1 - o2 为从大到小,o2 - o1 反之
        PriorityQueue<int[]> pq = new PriorityQueue<>((o1, o2) -> o1[1] - o2[1]);
        int[] res = new int[k]; // 答案数组为 k 个元素
        Map<Integer, Integer> map = new HashMap<>(); // 记录元素出现次数
        for(int num : nums) map.put(num, map.getOrDefault(num, 0) + 1);
        for(var x : map.entrySet()) { // entrySet 获取 k-v Set 集合
            // 将 kv 转化成数组
            int[] tmp = new int[2];
            tmp[0] = x.getKey();
            tmp[1] = x.getValue();
            pq.offer(tmp);
            if(pq.size() > k) {
                pq.poll();
            }
        }
        for(int i = 0; i < k; i ++) {
            res[i] = pq.poll()[0]; // 获取优先队列里的元素
        }
        return res;
    }
}

 文章来源地址https://www.toymoban.com/news/detail-607110.html

到了这里,关于347. 前 K 个高频元素的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Redis数据结构:高频面试题及解析

    Redis 是速度非常快的非关系型(NoSQL)内存键值数据库,可以存储键和五种不同类型的值之间的映射。 键的类型只能为字符串,值支持五种数据类型:字符串、列表、集合、散列表、有序集合。 Redis 支持很多特性,例如将内存中的数据持久化到硬盘中,使用复制来扩展读性能

    2024年02月08日
    浏览(65)
  • day12 | 239. 滑动窗口最大值、347.前 K 个高频元素、

    目录: 题目链接: https://leetcode.cn/problems/sliding-window-maximum/ https://leetcode.cn/problems/top-k-frequent-elements/ 239. 滑动窗口最大值 给你一个整数数组  nums ,有一个大小为  k  **的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的  k  个数字。滑动窗口每

    2024年02月08日
    浏览(52)
  • LeetCode 刷题 数据结构 链表 203 移除链表元素

    Given the  head  of a linked list and an integer  val , remove all the nodes of the linked list that has  Node.val == val , and return  the new head . Example 1: Example 2: Example 3: Constraints: The number of nodes in the list is in the range  [0, 104] . 1 = Node.val = 50 0 = val = 50 今天leetcode的中文官网比较卡,所以是登录官网进行

    2024年02月14日
    浏览(36)
  • 【Python】【数据结构和算法】保留最后N个元素

    使用 deque ,指定 maxlen 参数的值为N,例如: Python Cookbook 1.3

    2024年02月11日
    浏览(63)
  • 数据结构与算法面试

    1、链表反转 需要三个指针,一个pre指针指向反转的前一个节点,cur指向要反转的节点,然后设置有一个temp指针指向需要反转的下一个节点,用来使得cur指针移动,因为我们反转之后,无法使用next指针访问到后一个节点 2、数组实现队列 1、入队 2、出队 1、冒泡排序 比较相邻

    2024年02月09日
    浏览(38)
  • C++11 数据结构0 什么是 “数据结构“?数据,数据对象,数据元素,数据项 概念。算法的基本概念 和 算法的度量,大O表示法,空间换时间的代码

    是能输入计算机且能被计算机处理的各种符号的集合。 数值型的数据:整数和实数。 非数值型的数据:文字、图像、图形、声音等。         性质相同的 \\\"数据元素\\\" 的集合         例如一个 int arr[10],  Teacher tea[3]; 数据元素:          tea[0],tea[1],arr[2],这些都是 数据项:

    2024年04月15日
    浏览(52)
  • 【算法与数据结构】494、LeetCode目标和

    所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。    思路分析 :本题和这道题【算法与数据结构】1049、LeetCode 最后一块石头的重量 II类似,同样可以转换成01背包问题。下面开始论述。假设添加正号的整数子集和为 p o s i t i v e positive p os i t

    2024年01月20日
    浏览(45)
  • 【算法与数据结构】474、LeetCode一和零

    所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。    思路分析 :本题要找strs数组的最大子集,这个子集最多含有 m m m 个0和 n n n 个1。本题也可以抽象成一个01背包的问题。其中,strs内的元素就是物品,而 m m m 和 n n n 就是背包的维度。 d p [

    2024年01月22日
    浏览(42)
  • 【算法与数据结构】62、LeetCode不同路径

    所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。    思路分析 :机器人只能向下或者向右移动,那么到达(i,j)位置的路径和(i-1,j)以及(i,j-1)有关。那么我们就得到的动态规划的表达式 d p [ i ] [ j ] = d p [ i − 1 ] [ j ] + d p [ i ] [ j − 1 ] dp[i][

    2024年01月18日
    浏览(68)
  • 数据结构算法leetcode刷题练习(1)

    给定一个三角形 triangle ,找出自顶向下的最小路径和。 每一步只能移动到下一行中相邻的结点上。相邻的结点 在这里指的是 下标 与 上一层结点下标 相同或者等于 上一层结点下标 + 1 的两个结点。也就是说,如果正位于当前行的下标 i ,那么下一步可以移动到下一行的下标

    2023年04月24日
    浏览(54)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包