1.论文简介
论文:https://arxiv.org/pdf/2208.03641v1.pdf
github:SPD-Conv/YOLOv5-SPD at main · LabSAINT/SPD-Conv · GitHub
摘要:卷积神经网络(CNNs)在计算即使觉任务中如图像分类和目标检测等取得了显著的成功。然而,当图像分辨率较低或物体较小时,它们的性能会灾难性下降。这是由于现有CNN常见的设计体系结构中有缺陷,即使用卷积步长和/或池化层,这导致了细粒度信息的丢失和较低效的特征表示的学习。为此,我们提出了一个名为SPD-Conv的新的CNN构建块来代替每个卷积步长和每个池化层(因此完全消除了它们)。SPD-Conv由一个空间到深度(SPD)层和一个无卷积步长(Conv)层组成,可以应用于大多数CNN体系结构。我们从两个最具代表性的计算即使觉任务:目标检测和图像分类来解释这个新设计。然后,我们将SPD-Conv应用于YOLOv5和ResNet,创建了新的CNN架构,并通过经验证明,我们的方法明显优于最先进的深度学习模型,特别是在处理低分辨率图像和小物体等更困难的任务时。文章来源:https://www.toymoban.com/news/detail-607204.html
1.2. SPD- conv
SPD- conv由一个空间到深度(SPD)层和一个非跨步卷积层组成。SPD组件推广了一种(原始)图像转换技术[29]来对CNN内部和整个CNN的特征映射进行下采样:<文章来源地址https://www.toymoban.com/news/detail-607204.html
到了这里,关于涨点神器:基于Yolov8的SPD-Conv,低分辨率图像和小物体涨点明显的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!