概率论和随机过程的学习和整理20:条件概率我知道,但什么是条件期望?可用来解决递归问题

这篇具有很好参考价值的文章主要介绍了概率论和随机过程的学习和整理20:条件概率我知道,但什么是条件期望?可用来解决递归问题。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

1 目标问题: 什么是条件期望? 条件期望有什么用?

2 条件期望,全期望公式

3 条件期望,全期望公式 和 条件概率,全概率公式的区别和联系

3.1 公式如下

3.2 区别和联系

3.3 概率和随机过程

4 有什么用:---可以解决很多递归的问题

4.1 使用前有个前提:界定清楚你要求的随机变量的目标和类型

4.1.1 求的是次数,还是数量?

4.1.2 确定你要求的目标变量

4.2 例题1:计算出去的 时间= 步数 =次数,属于这一类问题

4.3 例题2:求次数,计算几何分布的期望

4.4 例题3:求个数,适合二项分布求成功的次数的期望

5 条件期望全期望公式和 马尔可夫转移 区别


1 目标问题: 什么是条件期望? 条件期望有什么用?

   这次先不说目标,先引用一个小学数学题作为开头

Q:假设已知1班平均分是93,2班平均分是95,那么两个班的平均分怎么算?

错误算法: (93+95)/2=94

  • 除非两个班的学生数量一样,否则就是错的
  • 这个不能用简单算术平均,得用加权平均

正确算法

  • 假设1班学生数量n1,平均分A1=93,假设2班学生数量n2,平均分A2=95
  • 根据平均分的定义
  • A0 = 总分数/总人数
  •     = (A1*n1 + A2*n2)/(n1+n2)
  •     = n1/(n1+n2)*A1 + n2/(n1+n2)*A2
  •     = 系数1*A1+系数2*A2
  •     = 人数权重比例1*A1+人数权重比例2*A2
  • 而权重 = 本班人数/ sum(所有班级人数和)

从这里引出了一个问题

Q1: 我们想知道总体的平均值,当然可以直接用总体的数计算,比如A0 = 总分数/总人数。但是如果我们已经知道了 总体的每个部分的平均值,是否可以根据这些算出总体的平均值呢?

A1: 答案是可以的,前面这个例子已经看到是可以的,总体均值= Σ部分均值*权重比例。

Q2: 接着问,如果这个总体不是确定的,而是一个随机变量,比如我们要求的是:这个随机变量的期望呢?

A2: 那么权重比例就变成了随机变量的概率,其实这个也就是 条件期望和全期望公式的内容

因此,引出了我们要讨论的主题:

  • 类比: 总体均值= Σ部分均值*权重比例
  • 全期望可以这么看
  • E(X) = ΣPi*E(X|Yi)      和上面是同一个表达方式
  • E(X) =E(E(X|Y))
  • E(X) = P1*E(X|Y1) + ..... +Pk*E(X|Yk) = ΣPi*E(X|Yi)
  • E(X) = E(E(X|Y)) = ΣPI*E(X|Yi) = P1*E(X|Y1) + ..... +Pk*E(X|Yk)  ,其中i属于(1,k)

2 条件期望,全期望公式

下面不同写法的概念是不同的

  • step1:  E(X) 是一个具体的数,随机变量的数学期望=随机变量的(概率)加权平均值=具体的数
  • step2:  因为在Y=y1的前提下,X还是有可能有几种情况,假设也是x1,x2...xk所以条件期望 E(X|Y=y1) = Σxi*P(xi|Y=y1) = x1*P(x1|Y=y1) +x2*P(x2|Y=y1) +...+xk*P(xk|Y=y1)
  • step3:  而对于随机变量X,Y还有多个取值y1,y2....yj,比如 E(X|Y=y1) 本身还对应着一个概率 Pj.  因此可以求期望 E(E(X|Y)) =ΣPI*E(X|Yj) = P1*E(X|Y1) + P2*E(X|Y2) +.....+Pj*E(X|Yj) 而实际上可证明,E(E(X|Y))=E(X)
  • step4: 所以全期望公式   E(X) = E(E(X|Y)) = ΣPI*E(X|Yi) = P1*E(X|Y1) + P2*E(X|Y2) + ..... +Pj*E(X|Yj)  ,其中i属于(1,j)

看下面的图理解

图是知乎的,参考   zhuanlan.zhihu.com/p/612709393

概率论和随机过程的学习和整理20:条件概率我知道,但什么是条件期望?可用来解决递归问题,概率论

3 条件期望,全期望公式 和 条件概率,全概率公式的区别和联系

3.1 公式如下

  • 条件概率:     P(A|B) =  P(AB) / P(B)
  • 全概率公式:  P(A) =  P(AB1) * P(B1) +P(AB2) * P(B2) + ......+P(ABn) * P(Bn)
  • 条件期望:     E(X|Y=y1) =E(X|y1) = Σxi*P(xi|Y=y1)
  • 全期望公式: E(X) = E(E(X|Y)) = ΣPj*E(X|Yj) = P1*E(X|Y1) + ..... +Pj*E(X|Yj)  ,其中j属于(1,k)

3.2 区别和联系

  • 条件概率,全概率公式,是用来求概率的
  • 条件期望,全期望公式,是用来求各种 随机变量的期望值,而不是概率,比如,合成的平均次数,合成的目标的平均数量... ... 等等。

3.3 概率和随机过程

  • 概率一般是求 瞬时/切面的发生可能,主要关注概率
  • 随机过程,一般是求一个时间过程内的情况,或一个时间过程后的情况,可以关注概率,次数,数量。。。等等

4 有什么用:---可以解决很多递归的问题

4.1 使用前有个前提:界定清楚你要求的随机变量的目标和类型

4.1.1 求的是次数,还是数量?

条件期望和全期望公式,之所以不如条件概率和全概率公式那么好理解,是因为需要仔细理解好,要分析的问题里,目标--随机变量,到底是什么?

  • 是希望知道多次随机之后,随机变量的数量?       
  • 是希望知道多次随机后达到某个状态所用的次数?   有点类几何分布
  • 等等

4.1.2 确定你要求的目标变量

  • 比如1个A有可能变成A,B,C,D对于的概率是0.5,0.2,0.2,0.1
  • 那么如果我们有100个A,那么想问可以生成多少个D?
  • 那么如果我们有100个A,那么想问可以生成多少个C?
  • 如果我想合成1个D,需要多少次呢?
  • 这都是不同的问题

4.2 例题1:计算出去的 时间= 步数 =次数,属于这一类问题

  • 一个矿工被困矿井里,面前可以打开3个门,均等概率,1个门回到外面花费3小时,1个门回到现在地方花费5小时,1个门回到现在地方花费7小时,求问矿工回到外面平均需要时间?
  • 设置X为矿工出去要花的时间
  • E(X) = 1/3* 3+  1/3* (E(X)+5)+1/3* (E(X)+7)
  • 3 E(X) = 3+  E(X)+5 +E(X)+7
  • E(X) = 15

4.3 例题2:求次数,计算几何分布的期望

如果丢硬币

假设正面成功概率p, 反面失败概率1-p,问直到成功1次的次数是多少?(同几何分布)

可以直接用几何分布的概率和期望公式计算

  • 几何分布概率:         pdf=p*(1-p)^n
  • 几何分布期望次数: E(X)=1/p

也可以用 条件期望和全期望公式

令n为第1次出现正面的次数,而Y表示单次实验的正反情况

E(N) =P*E(N|Y=1) + (1-P)*E(N|Y=0)

  • 显然 E(N|Y=1) =1,因为既然 Y=1了那就成功了,那么次数N也就=1
  • 而因为Y=0了,已经多了1次,而每次试验都是独立了又开始重新试验E(N)所以E(N|Y=0) =1+E(N)

这就是递归的规律

  • E(N) =P*1 + (1-P)*(1+E(N))
  • E(N) =P +(1-P)+ (1-P)*E(N)
  • E(N) =1+ (1-P)*E(N)
  • E(N) =1/p

这也是一个递归的问题

4.4 例题3:求个数,适合二项分布求成功的次数的期望

Q: 如果丢硬币

假设正面成功概率p, 反面失败概率1-p,问直到丢100次,平均有几次是成功呢?(多少个正面?)

A: 只要 p不等于0,且因为每次丢硬币都是独立的,理论上每次都可能是正面/反面,所以100次试验,正面的次数可能是(0,100)

那么平均会出现几次正面呢?

  • 不适合几何分布求最后1次成功的次数
  • 而二次分布看起来是合适的,二项分布的概率,是求成功K次的概率,而二项分布的期望是np, 是k所有不同取值时*对应概率求和,E(X)=np 正好就是成功k次的平均次数。
  • 也可以用 条件期望和全期望公式

而Y表示单次实验的正反情况

一次试验时,可能是正面的个数

E(N) =P*E(N|Y=1) + (1-P)*E(N|Y=0) 

E(N) =P*1 + (1-P)*0

  •  如果E(N|Y=1) ,因为既然 Y=1了那就成功了,那么这就有了1个正面的个数1
  •  如果E(N|Y=0) ,那就是这次生成了反面,没有生成正面,那么正面的个数就是0

这就是递归的规律

  • 先看单次试验的
  • E(N) =P*1 + (1-P)*0
  • E(N) =P 
  • 而N次试验是独立的
  • 所以
  • n*E(N)=np

5 条件期望全期望公式和 马尔可夫转移 区别

总结1:

  • 一般来说,求次数,求个数都可以用条件期望等。
  • 而马尔可夫链一般是用来求概率的,当然也可以来求平均次数

总结2:文章来源地址https://www.toymoban.com/news/detail-607288.html

  • 条件期望,全期望公式,比马尔可夫链的适用性更广,
  • 马尔可夫链的要求比较严格,但是对适合处理的情况,处理更快更方便。
  • 马尔可夫链只关注 n-1状态和n状态之间的关系
  • 马尔可夫链一般适合1个东西进行多状态之间切换,一般不适合多变1等合成问题
  • 一般要求各个状态之间是等权重的,步长相等,不能被扭曲。而且如果状态数量太大,好像马尔可夫链计算也很麻烦。

到了这里,关于概率论和随机过程的学习和整理20:条件概率我知道,但什么是条件期望?可用来解决递归问题的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 概率论的学习和整理16: 泊松分布(未完成)

    目录 简单的扩展到泊松分布  比较整体的动态过程,增加实验次数时 当二项分布,n很大,p很小的时候,会趋向泊松分布 当n足够大时,二项分布趋向于正态分布。这个结论在概率论中被称为中心极限定理,它是概率论中一个非常重要的定理,广泛应用于各种领域,如金融、

    2024年02月16日
    浏览(28)
  • 《概率论与数理统计》学习笔记3-二维随机变量及其分布

    目录 二维随机变量及其分布函数 二维离散型随机变量及其概率分布 连续型随机变量及其概率密度 条件分布 二维随机变量的函数分布         二维随机变量的定义:                 X和Y是定义在随机试验E的 样本空间Ω 上的 两个随机变量 ,他们 构成的向量 (𝑋

    2024年02月07日
    浏览(40)
  • 概率论的学习和整理14: 概率发生变化的抽奖,如何计算概率?( 缺 VBA模拟部分)

    目录 1 问题:如果要考察的概率模型(抽奖)里,基础中奖概率一直在变化怎么办? 1.1 基础问题,抽奖抽中的概率会变化 1.2  概率稳定的老模型,有什么问题? 1.3 比如:构建这样的一个新模型 2 用excel 计算这些概率 2.1 不用几何分布,但是照样可以求第n次是第一次成功的概率

    2024年01月17日
    浏览(38)
  • 概率论的学习和整理9:超几何分布 (未完成!!!)

    目录 1超几何分布 Hypergeometric distribution          1.1 超几何分布的定义 1.2 为什么叫超几何分布  1.3 超几何分布的公式  (2种公式) 1.3.1 超几何分布的公式1 (总体型公式) 1.3.2 超几何分布的公式2 (拆分型公式) 1.4 超几何分布的分布图 2 超几何分布的期望和方差 3 超几

    2024年02月13日
    浏览(29)
  • 概率论的学习和整理13--方差和协方差(未完成)

    一组数据的方差,没有加权信息,一般认为是 等概率的,按个数进行平均算方差 随机变量的方差,因为有概率作为权重,需要按概率算方差 常见说法,说到方差,一般把期望和方差成对出现一起说 什么是期望? 期望是一种平均值,出自赌博,是用概率做权重,随机变量的

    2024年02月03日
    浏览(28)
  • 概率论的学习和整理17:EXCEL的各种期望,方差的公式

    目录 1 总结 1.1 本文目标总结方法 1.2 总结一些中间关键函数 2 均值和期望 2.1 求均值的公式 2.2 求随机变量期望的公式 2.3 求随机变量期望的朴素公式 3 方差 3.1 确定数的方差 3.2 统计数的方差公式 3.3 随机变量的方差公式 3.4 EXCEL提供的直接计算方差的公式 4  期望 和方差的公

    2024年02月16日
    浏览(26)
  • 概率论的学习和整理21:用EXCEL来做假设检验(未完成草稿)

    目录 1 EXCEL可以用来做假设检验 1.1 如何打开 数据分析 和 规划求解 1.2  EXCEL里关于正态分布的准备知识 2 基本的假设检验 2.1 最基本的假设检验,单边的Z检验 2.1 双样本F检验 2.1.1 例题 2.1.2 进行F检验之前需要满足一些假设条件 2.1.3 计算步骤 2.1.4 如何查表:下面这个图是 显著

    2024年02月16日
    浏览(28)
  • 概率论--随机事件与概率--贝叶斯公式--随机变量

    目录 随机事件与概率 概念 为什么要学习概率论 随机事件与随机事件概率 随机事件 随机事件概率 贝叶斯公式  概念 条件概率 概率乘法公式 贝叶斯公式  举个栗子 随机变量   随机变量的定义 随机变量的分类 离散型随机变量 连续型随机变量 概念 随机事件是指在一次试验

    2024年02月11日
    浏览(39)
  • 【概率论】几何概率、条件概率及全概率公式作业

    有两箱零件,第一箱装50件,其中20件是一等品;第二箱装30件,其中18件是一等品,现从两箱中随意挑出一箱,然后从该箱中先后任取两个零件,试求第一次取出的零件是一等品的概率_____(结果小数点后保留1位) 【正确答案:0.5 或1/2】 解析: 设A₁,A₂分别表示“挑出第一箱

    2024年02月11日
    浏览(32)
  • 【概率论】条件概率与独立性题目

    已知随机事件A与B满足条件:0P(A)1,0P(B)1。则事件A,B相互独立的充要条件是( C )。 A. P ( B ∣ A ) + P ( B ∣ A ˉ ) = 1 P(B|A)+P(B|bar{A})=1 P ( B ∣ A ) + P ( B ∣ A ˉ ) = 1 B. P ( B ∣ A ) + P ( B ˉ ∣ A ) = 1 P(B|A)+P(bar{B}|A)=1 P ( B ∣ A ) + P ( B ˉ ∣ A ) = 1 C. P ( B ∣ A ) + P ( A ˉ ∣ B ˉ ) = 1 P(B|A)

    2024年02月11日
    浏览(30)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包