RT-Thread快速入门-定时器管理

这篇具有很好参考价值的文章主要介绍了RT-Thread快速入门-定时器管理。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

RT-Thread快速入门-定时器管理,单片机项目实战操作之优秀,单片机,嵌入式硬件

 

1时钟节拍

任何操作系统都需要提供一个时钟节拍,以供系统处理所有和时间有关的事件,如延时、线程的时间片轮转调度以及定时器超时等。时钟节拍(OS Tick)是操作系统中最小的时间单位。

时钟节拍是特定的周期性中断,这个中断之间的时间间隔取决于具体的应用,一般是 1-100ms。时钟节拍率越快,系统的额外开销就越大。

RT-Thread 中,一个时钟节拍的时长根据 rtconfig.h 配置文件中, RT_TICK_PER_SECOND 的 定 义 来 调 整, 等 于 1/RT_TICK_PER_SECOND 秒 。

时钟节拍的实现

时钟节拍由配置为中断触发模式的硬件定时器产 生,在中断服务程序中调用如下函数,通知操作系统已经过去一个系统时钟:

void rt_tick_increase(void)
{
  struct rt_thread *thread;

  /* 全局 rt_tick 递增 */
#ifdef RT_USING_SMP
  rt_cpu_self()->tick ++;
#else
  ++ rt_tick;
#endif

  /* 检查时间片 */
  thread = rt_thread_self();

  -- thread->remaining_tick;
  if (thread->remaining_tick == 0)
  {
    /* 重新赋初值 */
    thread->remaining_tick = thread->init_tick;
    /* 线程挂起 */
    thread->stat |= RT_THREAD_STAT_YIELD;

    /* yield */
    rt_thread_yield();
  }

  /* 检查定时器 */
  rt_timer_check();
}

从源代码中可以看出,每经过一个时钟节拍,全局变量 rt_tick 的值就会加 1。然后检查当前线程的时间片是否用完,以及是否有定时器超时。如果当前线程的时间片用完,则进行同优先级线程之间的切换。

不同的硬件定时器中断实现都不同,以 STM32 定时器中断为例:

void SysTick_Handler(void)
{
  /* 进 入 中 断 */
  rt_interrupt_enter();
  ……
  rt_tick_increase();
  /* 退 出 中 断 */
  rt_interrupt_leave();
}

在中断函数中,调用 rt_tick_increase() 对全局变量 rt_tcik 加 1。

rt_tick 的值表示了系统从启动到现在共经过的时钟节拍个数。

2定时器工作机制

RT-Thread 提供的定时器基于系统的节拍,提供了基于节拍整数倍的定时能力,即定时器定时以时钟节拍为单位。如此,定时器定时长短是 OS Tick 时长的整数倍。

如果一个时钟节拍是 10ms,那么系统软件定时器时长只能是 10ms、20ms、100等,而不能是 15ms。

定时器介绍

RT-Thread 提供了两种类型的定时器:

  • 单次触发定时器。这类定时器触发一次定时器事件后,会自动停止。

  • 周期触发定时器。这类定时器会周期性地触发定时器事件,直到用户手动停止。

另外,根据超时函数执行时所处的上下文环境,RT-Thread 的定时器有两种工作模式:

  • HARD_TIMER 模式,超时函数在中断上下文环境中执行。

  • SOFT_TIMER  模式,在系统创建的定时器线程上下文环境中执行。

HARD_TIMER 模式的定时器

这种模式是 RT-Thread 定时器默认的工作方式,定时器超时后,超时函数在系统时钟中断的上下文环境中执行。

这种情况下,对于超时函数的要求与中断服务例程的要求相同:执行时间应该尽量短、执行时不应该导致当前线程挂起等。否则会导致其他中断的响应时间加长,或抢占了其他线程执行的时间。

SOFT_TIMER 模式的定时器

这种工作模式,需要通过宏定义 RT_USING_TIMER_SOFT 来决定是否启用。启用这个模式后,RT-Thread 会在初始化时创建一个 timer 线程,SOFT_TIMER 模式的定时器超时函数都会在 timer 线中执行。

定时器如何工作

RT-Thread 维护着两个重要的全局变量:

  • rt_tick , 当前系统经过的时钟节拍个数。

  • rt_timer_list , 定时器链表。创建并激活的定时器都会按照超时时间从小到大进行排序,插入到这个链表中。

如下图所示,系统当前的 rt_tick 值为 20,且已经创建并启动了三个定时器:(1)定时为 50 个节拍的 Timer1(2)定时为 100 个节拍的 timer2(3)定时为 500 个节拍的 timer3。

这三个定时器分别加上系统当前时间 rt_tick, 从小到大排序链接在 rt_timer_list 中:

RT-Thread快速入门-定时器管理,单片机项目实战操作之优秀,单片机,嵌入式硬件

 

rt_tick 随着硬件定时器的触发一直在增长,50 个节拍后,rt_tick 从 20 增长到 70,与 Timer1 的 timerout 值相同,这时会触发 Timer1 定时器关联的超时函数,同时将其从 rt_timer_list 链表上删除。

同理,100 个节拍和 500 个节拍过去后,Timer2 和 Timer3 定时器的超时函数会被触发执行,将定时器 Timer2 和 Timer3 从 rt_timer_list 中删除。

定时器控制块

定时器控制块是 RT-Thread 用于管理定时器的一个数据结构,由结构体 struct rt_timer 定义形成定时器内核对象,再链接到内核容器中进行管理。

定时器控制块会存储定时器的一些信息,例如初始时钟节拍数、超时到达的节拍数、定时器之间连接用的链表结构、超时回调函数等。具体定义如下:

struct rt_timer
{
  struct rt_object parent;
  rt_list_t row[RT_TIMER_SKIP_LIST_LEVEL]; /* 定时器链表节点 */
  
  void (*timeout_func)(void *parameter);  /* 定时器超时函数 */
  void *parameter;                        /* 超时函数的参数 */
  
  rt_tick_t init_tick;     /* 定时器设定的超时节拍数 */
  rt_tick_t timeout_tick;  /* 定时器实际超时时的节拍数 */
};
typedef struct rt_timer *rt_timer_t;

3定时器管理

前面介绍了定时器相关的理论知识,那么 RT-Thread 提供了怎样的定时器操作函数,以及如何使用它们呢?

RT-Thread 提供的定时器相关的操作包括:

  • 创建/初始化定时器

  • 启动定时器

  • 控制定时器

  • 删除/脱离定时器

所有定时器会在定时超时后从定时器链表中被删除,而周期性定时器会在它再次启动时被加入定时器链表中。

RT-Thread快速入门-定时器管理,单片机项目实战操作之优秀,单片机,嵌入式硬件

 

1. 创建定时器

创建一个定时器有两种方式:动态创建和静态初始化。

动态创建一个定时器,使用如下函数接口:

rt_timer_t rt_timer_create(const char *name,
                           void (*timeout)(void *parameter),
                           void       *parameter,
                           rt_tick_t   time,
                           rt_uint8_t  flag)

调用此函数后,内核自动从内存堆中分配一个定时器控制块,然后初始化该定时器控制块。各个参数说明如下:

参数 描述
name 定时器名称
timeout 定时器超时函数指针
parameter 定时器超时函数的入口参数
time 定时器超时时间,单位是时钟节拍
flag 创建定时器的参数,其值包括单次定时、周期定时、硬件定时器、软件定时器等

创建失败,返回 RT_NULL。创建成功,则返回定时器控制块指针。

定时器标志用到的宏定义:

#define RT_TIMER_FLAG_ONE_SHOT 0x0    /* 单 次 定 时 */
#define RT_TIMER_FLAG_PERIODIC 0x2    /* 周 期 定 时 */

#define RT_TIMER_FLAG_HARD_TIMER 0x0  /* 硬 件 定 时 器 */
#define RT_TIMER_FLAG_SOFT_TIMER 0x4  /* 软 件 定 时 器 */

上面两组可以以 "或"逻辑方式赋值给 flag

静态创建一个定时器,需要用户定义一个定时器控制块结构体 struct rt_timer 变量,然后 rt_timer_init() 函数对其初始化。该函数原型如下:

void rt_timer_init(rt_timer_t timer,
                  const char *name,
                  void   (*timeout)(void* parameter),
                  void   *parameter,
                  rt_tick_t time, rt_uint8_t flag);

该函数比 rt_timer_create() 多了一个参数 timer,其他参数都相同,不再赘述。参数 timer 实际上是定时器控制块指针。

2. 启动定时器

定时器创建之后,不会被立即启动,需要在调用启动定时器函数接口后,才开始工作。

RT-Thread 提供的启动定时器函数如下:

rt_err_t rt_timer_start(rt_timer_t timer);

函数的参数 timer 为定时器控制块指针(定时器句柄),指向要启动的定时器控制块。

调用启动函数后,定时器的状态更改为激活状态,并按照超时时间顺序插入到 rt_timer_list 队列链表中。

启动定时器后,如果想停止它,可以用下面的函数:

rt_err_t rt_timer_stop(rt_timer_t timer);

调用该函数后,定时器状态更改为停止,并从 rt_timer_list 链表中脱离出来,不参与定时器超时检查。

函数返回 RT_EOK,表示成功停止定时器。返回 -RT_ERROR,说明定时器已经处于停止状态了。

4定时器应用演示

理论+实践是学习新知识最有效的方法。

举例来演示如何创建定时器。这个例程动态创建两个定时器,一个单次定时器,一个周期定时器,并让定时器运行一段时间后停止。代码如下:

#include <rtthread.h>

/* 定时器的控制块 */
static rt_timer_t timer1;
static rt_timer_t timer2;
static int cnt = 0;

/* 定时器1超时函数 */
static void timeout1(void *parameter)
{
 rt_kprintf("periodic timer is timeout %d\n", cnt);
 /* 运行第 10 次,停止周期定时器 */
 if (cnt++>= 9)
 {
  rt_timer_stop(timer1);
  rt_kprintf("periodic timer was stopped! \n");
 }
}
/* 定时器 2 超时函数 */
static void timeout2(void *parameter)
{
 rt_kprintf("one shot timer is timeout\n");
}

int main()
{
 /* 创建定时器1周期定时器 */
 timer1 = rt_timer_create("timer1", timeout1,
                RT_NULL, 10,
                RT_TIMER_FLAG_PERIODIC);
 /* 启动定时器1 */
 if (timer1 != RT_NULL) 
 {
  rt_timer_start(timer1);
 }
 
 /* 创建定时器2单次定时器 */
 timer2 = rt_timer_create("timer2", timeout2,
                RT_NULL, 30,
                RT_TIMER_FLAG_ONE_SHOT);
 /* 启动定时器2 */
 if (timer2 != RT_NULL) 
 {
  rt_timer_start(timer2);
 }
 
 return 0;
}

编译运行结果如下:

RT-Thread快速入门-定时器管理,单片机项目实战操作之优秀,单片机,嵌入式硬件

 

周期性定时器 1 的超时函数,每 10 节拍运行 1 次,共运行 10 次,之后停止(调用 rt_timer_stop())。

单次定时器 2 的超时函数在 30 个时钟节拍后运行一次。

下面举例说明静态创建定时器,需要定义定时器控制块结构变量,然后调用初始化函数对其初始化:

#include <rtthread.h>

/* 定时器的控制块 */
static struct rt_timer timer1;
static struct rt_timer timer2;
static int cnt = 0;

/* 定时器1超时函数 */
static void timeout1(void* parameter)
{
  rt_kprintf("periodic timer is timeout\n");
  /* 运行10次 */
  if (cnt++>= 9)
  {
   rt_timer_stop(&timer1);
  }
}
/* 定 时 器 2 超 时 函 数 */
static void timeout2(void* parameter)
{
 rt_kprintf("one shot timer is timeout\n");
}

int main(void)
{
  /* 初始化定时器1 */
  rt_timer_init(&timer1, "timer1", /* 定 时 器 名 字 是 timer1 */
              timeout1, RT_NULL, 10, 
              RT_TIMER_FLAG_PERIODIC); /* 周期定时器 */
 /* 初始化定时器2 */
  rt_timer_init(&timer2, "timer2", /* 定 时 器 名 字 是 timer2 */
              timeout2, RT_NULL, 30,
              RT_TIMER_FLAG_ONE_SHOT); /* 单次定时器 */

/* 启动定时器 */
  rt_timer_start(&timer1);
  rt_timer_start(&timer2);

 return 0;
}

其执行结果与动态创建示例相同。

5其他定时器管理函数

初学者掌握定时器创建使用即可,RT-Thread 还提供了其他的定时器管理函数,可以了解学习。

1. 删除定时器

动态创建的定时器,可以用下面的函数删除:

rt_err_t rt_timer_delete(rt_timer_t timer);

调用这个函数接口后,系统会把这个定时器从 rt_timer_list 链表中删除,然后释放相应的定时器控制块占有的内存。

静态创建的定时器,可以用下边的函数脱离定时器:

rt_err_t rt_timer_detach(rt_timer_t timer);  

脱离定时器时,系统会把定时器对象从内核对象容器中脱离,但是定时器对象所占有的内存不会被释放。

2. 控制定时器

RT-Thread 也额外提供了定时器控制函数接口,以获取或设置更多定时器的信息。控制定时器函数接口如下:

rt_err_t rt_timer_control(rt_timer_t timer, rt_uint8_t cmd, void* arg);

控制定时器函数接口可根据命令类型参数,来查看或改变定时器的设置。

参数 cmd 为用于控制定时器的命令,当前支持四个命令:设置定时时间、查看定时时间、设置单次触发、设置周期触发。

#define RT_TIMER_CTRL_SET_TIME      0x0  /* 设置定时器超时时间 */
#define RT_TIMER_CTRL_GET_TIME      0x1  /* 获得定时器超时时间 */
#define RT_TIMER_CTRL_SET_ONESHOT   0x2  /* 设置定时器为单次定时器 */
#define RT_TIMER_CTRL_SET_PERIODIC  0x3  /* 设置定时器为周期型定时器 */

arg 为控制命令的参数。

OK,今天先到这,加油~文章来源地址https://www.toymoban.com/news/detail-607353.html

到了这里,关于RT-Thread快速入门-定时器管理的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • RT-Thread 中断管理学习(二)

    RTT不对中断服务程序所需要的处理时间做任何假设、限制,但如图其它实时操作系统或非实时操作系统一样,用户需要保证所有的中断服务程序在尽可能短的时间内完成(中断服务程序在系统中相当于拥有最高的优先级,会抢占所有线程优先执行)。这样在发生中断嵌套,或

    2024年02月10日
    浏览(48)
  • RT-Thread 中断管理学习(一)

    什么是中断?简单的解释就是系统正在处理某一个正常事件,忽然被另一个需要马上处理的紧急事件打断,系统转而处理这个紧急事件,待处理完毕,再恢复运行刚才被打断的事件。生活中,我们经常会遇到这样的场景: 当你正在专心看书的时候,忽然来了一个电话,于是记

    2024年02月10日
    浏览(49)
  • RT-Thread入门笔记2-动态内存堆的使用

    栈(stack): 由编译器自动分配释放 堆(heap) : 一般由程序员分配和释放 PS:一个ARM程序包含3部分:RO,RW和ZI RO是程序中的指令和常量 RW是程序中的已初始化变量 ZI是程序中的未初始化的变量 void *rt_malloc(rt_size_t nbytes):rt_malloc函数会从系统堆空间中找到合适大小的内存块.

    2024年02月02日
    浏览(32)
  • 【STM32&RT-Thread零基础入门】 4. 线程介绍(理论)

    前文中的最后一个任务发现,一个main()函数很难同时实现按键功能和闪灯功能,就好像人很难同时完成左手画圆右手画方一样,这种情况可以安排一人去画圆、一人去画方,并行进行就很容易了,两人各司其职,互不干扰。 操作系统中,一个线程就像做事的一个人。一个操作

    2024年02月12日
    浏览(37)
  • RT-Thread入门笔记5-线程的时间片轮询调度

    优先级和时间片是线程的两个重要参数,优先级描述了线程竞争处理器资源的能力。 优先级和时间片 优先级 RT-Thread 最大支持 256 个优先级(数值越小的优先级越高,0 为最高优先级, 最低优先级预留给空闲线程);用户可以通过rt_config.h中的RT_THREAD_PRIORITY_MAX宏来修改最大支持

    2024年02月02日
    浏览(42)
  • 【STM32&RT-Thread零基础入门】 3. PIN设备(GPIO)的使用

    硬件:STM32F103ZET6、ST-LINK、usb转串口工具、4个LED灯、1个蜂鸣器、4个1k电阻、2个按键、面包板、杜邦线 在嵌入式系统中,GPIO是最常用的一种设备,在RT-Thread操作系统中,把GPIO命名为PIN设备。 RT-Thread通过PIN设备对芯片的GPIO引脚进行管理,应用程序可以通过其提供的一组PIN设备

    2024年02月13日
    浏览(46)
  • 【STM32&RT-Thread零基础入门】 7. 线程创建应用(多线程运行机制)

    硬件:STM32F103ZET6、ST-LINK、usb转串口工具、4个LED灯、1个蜂鸣器、4个1k电阻、2个按键、面包板、杜邦线 本章进一步研究多线程的运行机制。要求实现功能如下:创建2个线程,线程名称分别为LED和BEEP。两个线程的任务是连续5次打印本线程的名字后退出线程(注意:线程不执行

    2024年02月03日
    浏览(35)
  • 【STM32&RT-Thread零基础入门】 6. 线程创建应用(线程挂起与恢复)

    硬件:STM32F103ZET6、ST-LINK、usb转串口工具、4个LED灯、1个蜂鸣器、4个1k电阻、2个按键、面包板、杜邦线 在上一个任务中,通过停止命令把线程删除后,线程在系统中就不存在了,也无法再使线程重新运行。例如输入stop_led_thread命令后,led停止闪烁,但也无法重新开启LED灯闪烁

    2024年02月11日
    浏览(34)
  • 【STM32&RT-Thread零基础入门】 5. 线程创建应用(线程创建、删除、初始化、脱离、启动、睡眠)

    硬件:STM32F103ZET6、ST-LINK、usb转串口工具、4个LED灯、1个蜂鸣器、4个1k电阻、2个按键、面包板、杜邦线 本章主要讲线程的工作机制和管理方法,通过实例讲解如何使用多线程完成多任务开发。 RT-Thread用线程控制块来描述和管理一个线程,一个线程对应一个线程控制块。线程控

    2024年02月12日
    浏览(53)
  • RT-Thread 1. GD32移植RT-Thread Nano

    1. RT-Thread Nano 下载 RT-Thread Nano 是一个极简版的硬实时内核,它是由 C 语言开发,采用面向对象的编程思维,具有良好的代码风格,是一款可裁剪的、抢占式实时多任务的 RTOS。其内存资源占用极小,功能包括任务处理、软件定时器、信号量、邮箱和实时调度等相对完整的实

    2024年02月05日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包