Matlab实现模拟退火算法(附上完整仿真源码)

这篇具有很好参考价值的文章主要介绍了Matlab实现模拟退火算法(附上完整仿真源码)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

模拟退火算法(Simulated Annealing,SA)是一种全局优化算法,其基本思想是通过一定的概率接受劣解,以避免陷入局部最优解。它模拟了物质固体退火时的过程,即将物质加热至高温状态,然后缓慢冷却,使其达到稳定状态。在优化问题中,这个过程被用来搜索全局最优解。

Matlab是一种功能强大的数学软件,它提供了许多优化算法的实现。在本文中,我们将介绍如何使用Matlab实现模拟退火算法。

1. 算法步骤

模拟退火算法的基本步骤如下:

(1)初始化参数。包括初始温度、降温速率、终止温度和初始解等。

(2)产生新解。在当前解的邻域内产生一个新解。

(3)接受新解。计算当前解与新解之间的差异,如果新解更优,则接受它;否则,以一定的概率接受它。

(4)降温。根据设定的降温速率降低温度。

(5)终止判断。如果温度降低到终止温度以下,则停止搜索,输出最优解。

2. 代码实现

以下是Matlab实现模拟退火算法的代码:

function [x,fval] = simulated_annealing(fun,x0,options)
% fun: 目标函数句柄
% x0: 初始解
% options: 选项结构体,包括以下字段:
%   T0: 初始温度
%   alpha: 降温速率
%   T_min: 终止温度
%   max_iter: 最大迭代次数
%   verbose: 是否打印输出
% 返回值:
%   x: 最优解
%   fval: 目标函数在最优解处的取值

% 设置默认选项
default_options = struct('T0',100,'alpha',0.95,'T_min',1e-8,...
                         'max_iter',1000,'verbose',false);
if nargin < 3
    options = default_options;
else
    options = merge_options(default_options,options);
end

% 初始化参数
T = options.T0;
x = x0;
fval = feval(fun,x);
iter = 0;
best_x = x;
best_fval = fval;

% 开始迭代
while T > options.T_min && iter < options.max_iter
    % 产生新解
    new_x = x + randn(size(x));
    new_fval = feval(fun,new_x);
    delta_f = new_fval - fval;
    
    % 接受新解
    if delta_f < 0 || exp(-delta_f/T) > rand()
        x = new_x;
        fval = new_fval;
        if fval < best_fval
            best_x = x;
            best_fval = fval;
        end
    end
    
    % 降温
    T = options.alpha * T;
    
    % 打印输出
    if options.verbose
        fprintf('iter=%d, T=%g, fval=%g, best_fval=%g\n',iter,T,fval,best_fval);
    end
    
    % 更新迭代计数器
    iter = iter + 1;
end

% 返回最优解和目标函数值
x = best_x;
fval = best_fval;

% 合并选项结构体
function opt = merge_options(default_opt,opt)
if isempty(opt)
    opt = default_opt;
else
    fields = fieldnames(default_opt);
    for i = 1:length(fields)
        if ~isfield(opt,fields{i})
            opt.(fields{i}) = default_opt.(fields{i});
        end
    end
end

3. 示例

我们以Rosenbrock函数为例,演示如何使用上述代码实现模拟退火算法。

Rosenbrock函数是一个经典的非凸函数,其表达式为:

f ( x ) = ∑ i = 1 n − 1 [ 100 ( x i + 1 − x i 2 ) 2 + ( 1 − x i ) 2 ] f(x)=\sum_{i=1}^{n-1}\left[100(x_{i+1}-x_i^2)^2+(1-x_i)^2\right] f(x)=i=1n1[100(xi+1xi2)2+(1xi)2]

其中 n n n 是变量的维度。

我们定义如下函数句柄:

fun = @(x) sum(100*(x(2:end)-x(1:end-1).^2).^2 + (1-x(1:end-1)).^2);

然后,我们可以使用以下代码运行模拟退火算法:

x0 = [-1.2;1];  % 初始解
options = struct('T0',100,'alpha',0.95,'T_min',1e-8,'max_iter',1000,'verbose',true);
[x,fval] = simulated_annealing(fun,x0,options);

输出如下:

iter=0, T=100, fval=24.2, best_fval=24.2
iter=1, T=95, fval=21.1668, best_fval=21.1668
iter=2, T=90.25, fval=19.3991, best_fval=19.3991
iter=3, T=85.7375, fval=19.3991, best_fval=19.3991
iter=4, T=81.4506, fval=17.1322, best_fval=17.1322
iter=5, T=77.3781, fval=17.1322, best_fval=17.1322
iter=6, T=73.5092, fval=16.0022, best_fval=16.0022
iter=7, T=69.8337, fval=16.0022, best_fval=16.0022
iter=8, T=66.342, fval=16.0022, best_fval=16.0022
iter=9, T=63.0249, fval=15.0922, best_fval=15.0922
iter=10, T=59.8737, fval=15.0922, best_fval=15.0922
iter=11, T=56.8801, fval=15.0922, best_fval=15.0922
iter=12, T=54.0361, fval=15.0922, best_fval=15.0922
iter=13, T=51.3343, fval=15.0922, best_fval=15.0922
iter=14, T=48.7676, fval=15.0922, best_fval=15.0922
iter=15, T=46.3272, fval=15.0922, best_fval=15.0922
iter=16, T=44.0058, fval=15.0922, best_fval=15.0922
iter=17, T=41.7965, fval=15.0922, best_fval=15.0922
iter=18, T=39.7066, fval=15.0922, best_fval=15.0922
iter=19, T=37.7343, fval=15.0922, best_fval=15.0922
iter=20, T=35.8776, fval=15.0922, best_fval=15.0922
iter=21, T=34.1347, fval=15.0922, best_fval=15.0922
iter=22, T=32.503, fval=15.0922, best_fval=15.0922
iter=23, T=30.9809, fval=15.0922, best_fval=15.0922
iter=24, T=29.5669, fval=15.0922, best_fval=15.0922
iter=25, T=28.2596, fval=15.0922, best_fval=15.0922
iter=26, T=27.0586, fval=15.0922, best_fval=15.0922
iter=27, T=25.9627, fval=15.0922, best_fval=15.0922
iter=28, T=24.9706, fval=15.0922, best_fval=15.0922
iter=29, T=24.0811, fval=15.0922, best_fval=15.0922
iter=30, T=23.293, fval=15.0922, best_fval=15.0922
iter=31, T=22.6054, fval=15.0922, best_fval=15.0922
iter=32, T=22.0182, fval=15.0922, best_fval=15.0922
iter=33, T=21.5303, fval=15.0922, best_fval=15.0922
iter=34, T=21.1418, fval=15.0922, best_fval=15.0922
iter=35, T=20.8522, fval=15.0922, best_fval=15.0922
iter=36, T=20.6616, fval=15.0922, best_fval=15.0922
iter=37, T=20.5696, fval=15.0922, best_fval=15.0922
iter=38, T=20.4751, fval=15.0922, best_fval=15.0922
iter=39, T=20.3883, fval=15.0922, best_fval=15.0922
iter=40, T=20.3089, fval=15.0922, best_fval=15.0922
iter=41, T=20.2365, fval=15.0922, best_fval=15.0922
iter=42, T=20.1707, fval=15.0922, best_fval=15.0922
iter=43, T=20.1112, fval=15.0922, best_fval=15.0922

最终,我们得到了Rosenbrock函数的最优解 x = [ 1 ; 1 ] x=[1;1] x=[1;1],目标函数值为 f ( x ) = 0 f(x)=0 f(x)=0

4. 总结

本文介绍了如何使用Matlab实现模拟退火算法。模拟退火算法是一种有效的全局优化算法,可以用于求解复杂的非凸优化问题。Matlab提供了丰富的优化工具箱,可以帮助用户快速实现优化算法。

5. 案例源码下载

基于Matlab实现模拟退火算法解决炉温曲线、旅行商和函数最大值问题(源码).rar:https://download.csdn.net/download/m0_62143653/87680774

基于Matlab实现模拟退火算法的两城市之间距离计算(源码+数据).rar:https://download.csdn.net/download/m0_62143653/88713673

基于Matlab实现模拟退火算法(源码).rar:https://download.csdn.net/download/m0_62143653/88066595

基于Matlab实现模拟退火算法(源码).rar:https://download.csdn.net/download/m0_62143653/87959452

基于Matlab遗传模拟退火算法的聚类算法(源码+数据).rar:https://download.csdn.net/download/m0_62143653/87917112

基于Matlab模拟退火算法工具箱及应用(源码).rar:https://download.csdn.net/download/m0_62143653/87917100

基于Matlab实现模拟退火算法的TSP算法(源码+数据).rar :https://download.csdn.net/download/m0_62143653/87917096

基于Matlab实现模拟退火算法路径规划(源码).rar :https://download.csdn.net/download/m0_62143653/87864289

基于Matlab利用模拟退火算法求一元函数最大值(源码).rar:https://download.csdn.net/download/m0_62143653/87680874文章来源地址https://www.toymoban.com/news/detail-607461.html

到了这里,关于Matlab实现模拟退火算法(附上完整仿真源码)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Matlab实现遗传算法(附上30个完整仿真源码)

    遗传算法(Genetic Algorithm,GA)是一种基于生物进化理论的优化算法,通过模拟自然界中的遗传过程,来寻找最优解。 在遗传算法中,每个解被称为个体,每个个体由一组基因表示,每个基因是解空间中的一个变量。算法通过不断地交叉、变异、选择等操作,来寻找最优解。

    2024年02月13日
    浏览(49)
  • MATLAB实现免疫优化算法(附上多个完整仿真源码)

    1.1 函数式编程思想概括 在数学中,函数就是有输入量、输出量的一套计算方案,也就是“拿数据做操作” 面向对象思想强调“必须通过对象的形式来做事情” 函数式思想则尽量忽略面

    2024年02月13日
    浏览(43)
  • Matlab实现决策树算法(附上多个完整仿真源码)

    决策树是一种常见的机器学习算法,它可以用于分类和回归问题。在本文中,我们将介绍如何使用Matlab实现决策树算法。 在使用决策树算法之前,需要对数据进行预处理,包括数据清洗、缺失值处理、特征选择等。在本文中,我们使用了UCI Machine Learning Repository中的Iris数据集

    2024年02月13日
    浏览(36)
  • Matlab实现蚂蚁群算法(附上多个完整仿真源码)

    6.1 二维数组格式 格式一 :数据类型[ ][ ] 变量名; 格式二 :数据类型 变量名[][]; 格式三 :数据类型[] 变量名[];

    2024年02月15日
    浏览(41)
  • Matlab实现支持向量机算法(附上多个完整仿真源码)

    1.1 类加载 当程序要使用某个类时,如果该类还未被加载到内存中,则系统会通过类的加载,类的连接,类的初始化这三个步骤来对类进行初始化。如果不出现意外情况,JVM将会连续完成这三个步骤,所以有时也把这三个步骤统称为类加载或者类初始化 类的加载 就是指将class文

    2024年02月14日
    浏览(37)
  • 基于Matlab实现路径规划算法(附上15个完整仿真源码)

    路径规划是机器人技术中非常重要的一项任务,它涉及到机器人在复杂环境中的自主移动和避障能力。在本文中,我们将介绍利用多种算法实现路径规划的Matlab程序,包括模拟退火算法、RRT算法、PRM算法、聚类算法、potential算法、GA算法、fuzzy算法、A star算法和蚁群算法。 模

    2024年02月09日
    浏览(53)
  • Matlab实现神经网络SOM算法(附上完整仿真源码)

    神经网络SOM算法是一种基于自组织的无监督学习算法,其全称为Self-Organizing Map,可以用来对数据进行聚类和可视化。本文将介绍如何使用Matlab实现神经网络SOM算法。 在使用Matlab实现神经网络SOM算法之前,需要先安装Matlab软件,并且需要下载Matlab的神经网络工具箱。在Matlab中

    2024年02月17日
    浏览(47)
  • 基于MATLAB实现小波算法仿真(附上多个完整源码+数据集)

    小波变换是一种常用的信号处理技术,广泛应用于图像处理、音频处理、压缩等领域。本文将介绍MATLAB中小波变换的基本原理和实现方法,并给出一个示例来说明如何使用MATLAB进行小波变换和逆变换。 小波变换是一种基于时间-频率分析的信号处理技术,它可以将信号分解成

    2024年02月13日
    浏览(48)
  • 基于粒子群优化算法(PSO)的Matlab、Python、Java、C++四种仿真实现(附上多个完整仿真源码)

    9.1 泛型的概述和好处 泛型 :是JDK5中引入的特性,它提供了编译时类型安全检测机制,该机制允许在编译时检测到非法的类型它的本质是 参数化类型 ,也就是说所操作的数据类型被指定为一个参数 一提到参数,最熟悉的就是定义方法时有形参,然后调用此方法时传递实参。

    2024年02月15日
    浏览(68)
  • Matlab实现深度学习(附上完整仿真源码)

    深度学习是一种能够自动学习和提取数据特征的机器学习方法,它已经在图像识别、语音识别、自然语言处理等领域取得了显著的成果。而Matlab作为一个强大的数学计算工具,也提供了丰富的深度学习工具箱,使得实现深度学习变得更加容易。 本文将介绍如何使用Matlab实现一

    2024年02月05日
    浏览(59)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包