多级缓存
背景
传统的缓存策略一般是请求到达Tomcat后,先查询Redis,如果未命中则查询数据库,会存在以下问题:
- 请求需要经过Tomcat处理,Tomcat的性能成为整个系统的瓶颈。
- Redis缓存失效时,会对数据库产生冲击。
而多级缓存就是充分利用请求处理的每个环节,分别添加缓存,减轻Tomcat压力,提升服务性能
JVM进程缓存
这里的JVM进程缓存则为下图标记的部分
首先安装MySQL,后期做数据同步的是好事需要用到MySQL的主从功能,所以在虚拟机中使用Docker来运行一个MySQL容器。
Caffeine
缓存在日常开发中启动至关重要的作用,由于是存储在内存中,数据的读取速度是非常快的,能大量减少对数据库的访问,减少数据库的压力。可以把缓存分为两类:
- 分布式缓存,例如Redis:
- 优点:存储容量更大、可靠性更好、可以在集群间共享
- 缺点:访问缓存有网络开销
- 场景:缓存数据量较大、可靠性要求较高、需要在集群间共享
- 进程本地缓存,例如HashMap、GuavaCache:
- 优点:读取本地内存,没有网络开销,速度更快
- 缺点:存储容量有限、可靠性较低、无法共享
- 场景:性能要求较高,缓存数据量较小
Caffeine是一个基于Java8开发的,提供了近乎最佳命中率的高性能的本地缓存库。目前Spring内部的缓存使用的就是Caffeine。
GitHub地址:https://github.com/ben-manes/caffeine
Caffeine的性能非常好,下图是官方给出的性能对比:
缓存使用的基本API:
@Test
void testBasicOps() {
// 构建cache对象
Cache<String, String> cache = Caffeine.newBuilder().build();
// 存数据
cache.put("num", "1234");
// 取数据
String num = cache.getIfPresent("num");
System.out.println("num = " + num);
// 取数据,包含两个参数:
// 参数一:缓存的key
// 参数二:Lambda表达式,表达式参数就是缓存的key,方法体是查询数据库的逻辑
// 优先根据key查询JVM缓存,如果未命中,则执行参数二的Lambda表达式
String defaultNum = cache.get("defaultNum", key -> {
// 根据key去数据库查询数据
return "4321";
});
System.out.println("defaultNum = " + defaultNum);
}
Caffeine既然是缓存的一种,肯定需要有缓存的清除策略,不然的话内存总会有耗尽的时候。
Caffeine提供了三种缓存驱逐策略:
-
基于容量:设置缓存的数量上限
// 创建缓存对象 Cache<String, String> cache = Caffeine.newBuilder() .maximumSize(1) // 设置缓存大小上限为 1 .build();
-
基于时间:设置缓存的有效时间
// 创建缓存对象 Cache<String, String> cache = Caffeine.newBuilder() // 设置缓存有效期为 10 秒,从最后一次写入开始计时 .expireAfterWrite(Duration.ofSeconds(10)) .build();
-
基于引用:设置缓存为软引用或弱引用,利用GC来回收缓存数据。性能较差,不建议使用。
案例分析
为了演示多级缓存,先导入一个商品管理的案例,其中包含商品的CRUD功能。将来会给查询商品添加多级缓存。
安装MySQL
1、准备目录
为了后期方便配置MySQL,准备两个目录,用于挂载容器的数据和配置文件目录
# 进入/tmp目录
cd /tmp
# 创建文件夹
mkdir mysql
# 进入mysql目录
cd mysql
2、运行命令
进入mysql目录后,执行一下Docker命令
docker run \
-p 3306:3306 \
--name mysql \
-v $PWD/conf:/etc/mysql/conf.d \
-v $PWD/logs:/logs \
-v $PWD/data:/var/lib/mysql \
-e MYSQL_ROOT_PASSWORD=123456 \
--privileged \
-d \
mysql:5.7.25
3、修改配置
在/tmp/mysql/conf目录添加一个my.cnf文件,作为mysql的配置文件:
# 创建文件
touch /tmp/mysql/conf/my.cnf
文件内容:
[mysqld]
skip-name-resolve
character_set_server=utf8
datadir=/var/lib/mysql
server-id=1000
配置修改完成后,重启容器。
docker restart mysql
导入SQL
SET NAMES utf8mb4;
SET FOREIGN_KEY_CHECKS = 0;
-- ----------------------------
-- Table structure for tb_item
-- ----------------------------
DROP TABLE IF EXISTS `tb_item`;
CREATE TABLE `tb_item` (
`id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '商品id',
`title` varchar(264) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT '商品标题',
`name` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL DEFAULT '' COMMENT '商品名称',
`price` bigint(20) NOT NULL COMMENT '价格(分)',
`image` varchar(200) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '商品图片',
`category` varchar(200) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '类目名称',
`brand` varchar(100) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '品牌名称',
`spec` varchar(200) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '规格',
`status` int(1) NULL DEFAULT 1 COMMENT '商品状态 1-正常,2-下架,3-删除',
`create_time` datetime NULL DEFAULT NULL COMMENT '创建时间',
`update_time` datetime NULL DEFAULT NULL COMMENT '更新时间',
PRIMARY KEY (`id`) USING BTREE,
INDEX `status`(`status`) USING BTREE,
INDEX `updated`(`update_time`) USING BTREE
) ENGINE = InnoDB AUTO_INCREMENT = 50002 CHARACTER SET = utf8 COLLATE = utf8_general_ci COMMENT = '商品表' ROW_FORMAT = COMPACT;
-- ----------------------------
-- Records of tb_item
-- ----------------------------
INSERT INTO `tb_item` VALUES (10001, 'RIMOWA 21寸托运箱拉杆箱 SALSA AIR系列果绿色 820.70.36.4', 'SALSA AIR', 16900, 'https://m.360buyimg.com/mobilecms/s720x720_jfs/t6934/364/1195375010/84676/e9f2c55f/597ece38N0ddcbc77.jpg!q70.jpg.webp', '拉杆箱', 'RIMOWA', '{\"颜色\": \"红色\", \"尺码\": \"26寸\"}', 1, '2019-05-01 00:00:00', '2019-05-01 00:00:00');
INSERT INTO `tb_item` VALUES (10002, '安佳脱脂牛奶 新西兰进口轻欣脱脂250ml*24整箱装*2', '脱脂牛奶', 68600, 'https://m.360buyimg.com/mobilecms/s720x720_jfs/t25552/261/1180671662/383855/33da8faa/5b8cf792Neda8550c.jpg!q70.jpg.webp', '牛奶', '安佳', '{\"数量\": 24}', 1, '2019-05-01 00:00:00', '2019-05-01 00:00:00');
INSERT INTO `tb_item` VALUES (10003, '唐狮新品牛仔裤女学生韩版宽松裤子 A款/中牛仔蓝(无绒款) 26', '韩版牛仔裤', 84600, 'https://m.360buyimg.com/mobilecms/s720x720_jfs/t26989/116/124520860/644643/173643ea/5b860864N6bfd95db.jpg!q70.jpg.webp', '牛仔裤', '唐狮', '{\"颜色\": \"蓝色\", \"尺码\": \"26\"}', 1, '2019-05-01 00:00:00', '2019-05-01 00:00:00');
INSERT INTO `tb_item` VALUES (10004, '森马(senma)休闲鞋女2019春季新款韩版系带板鞋学生百搭平底女鞋 黄色 36', '休闲板鞋', 10400, 'https://m.360buyimg.com/mobilecms/s720x720_jfs/t1/29976/8/2947/65074/5c22dad6Ef54f0505/0b5fe8c5d9bf6c47.jpg!q70.jpg.webp', '休闲鞋', '森马', '{\"颜色\": \"白色\", \"尺码\": \"36\"}', 1, '2019-05-01 00:00:00', '2019-05-01 00:00:00');
INSERT INTO `tb_item` VALUES (10005, '花王(Merries)拉拉裤 M58片 中号尿不湿(6-11kg)(日本原装进口)', '拉拉裤', 38900, 'https://m.360buyimg.com/mobilecms/s720x720_jfs/t24370/119/1282321183/267273/b4be9a80/5b595759N7d92f931.jpg!q70.jpg.webp', '拉拉裤', '花王', '{\"型号\": \"XL\"}', 1, '2019-05-01 00:00:00', '2019-05-01 00:00:00');
-- ----------------------------
-- Table structure for tb_item_stock
-- ----------------------------
DROP TABLE IF EXISTS `tb_item_stock`;
CREATE TABLE `tb_item_stock` (
`item_id` bigint(20) NOT NULL COMMENT '商品id,关联tb_item表',
`stock` int(10) NOT NULL DEFAULT 9999 COMMENT '商品库存',
`sold` int(10) NOT NULL DEFAULT 0 COMMENT '商品销量',
PRIMARY KEY (`item_id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8mb4 COLLATE = utf8mb4_general_ci ROW_FORMAT = COMPACT;
-- ----------------------------
-- Records of tb_item_stock
-- ----------------------------
INSERT INTO `tb_item_stock` VALUES (10001, 99996, 3219);
INSERT INTO `tb_item_stock` VALUES (10002, 99999, 54981);
INSERT INTO `tb_item_stock` VALUES (10003, 99999, 189);
INSERT INTO `tb_item_stock` VALUES (10004, 99999, 974);
INSERT INTO `tb_item_stock` VALUES (10005, 99999, 18649);
SET FOREIGN_KEY_CHECKS = 1;
其中包含两张表:
- tb_item:商品表,包含商品的基本信息
- tb_item_stock:商品库存表,包含商品的库存信息
因为库存是更新比较频繁的信息,写操作较多。而其他信息修改的频率非常低,所以将库存分离出来。
根据SQL表编写简单的CRUD。
Lua语法
Nginx编程需要用到Lua语言,就像Tomcat编程需要用到java语言一样。
Lua 是一种轻量小巧的脚本语言,用标准C语言编写并以源代码形式开放, 其设计目的是为了嵌入应用程序中,从而为应用程序提供灵活的扩展和定制功能。
官网地址:https://www.lua.org/
Lua经常嵌入到C语言开发的程序中,例如游戏开发、游戏插件等。
Nginx本身也是C语言开发,因此也允许基于Lua做拓展。
CentOS7默认已经安装了Lua语言环境,所以可以直接运行Lua代码。
在Linux虚拟机的任意目录下,新建一个hello.lua文件
添加下面的内容
print("Hello World!")
运行
变量与循环
学习任何语言必然离不开变量,而变量的声明必须先知道数据的类型。
数据类型
数据类型 | 描述 |
---|---|
nil | 这个最简单,只有值nil属于该类,表示一个无效值(在条件表达式中相当于false)。 |
boolean | 包含两个值:false和true |
number | 表示双精度类型的实浮点数 |
string | 字符串由一对双引号或单引号来表示 |
function | 由 C 或 Lua 编写的函数 |
table | Lua 中的表(table)其实是一个"关联数组"(associative arrays),数组的索引可以是数字、字符串或表类型。在 Lua 里,table 的创建是通过"构造表达式"来完成,最简单构造表达式是{},用来创建一个空表。 |
另外,Lua提供了type()函数来判断一个变量的数据类型:
声明变量
Lua声明变量的时候无需指定数据类型,而是用local来声明变量为局部变量:
-- 声明字符串,可以用单引号或双引号,
local str = 'hello'
-- 字符串拼接可以使用 ..
local str2 = 'hello' .. 'world'
-- 声明数字
local num = 21
-- 声明布尔类型
local flag = true
Lua中的table类型既可以作为数组,又可以作为Java中的map来使用。数组就是特殊的table,key是数组角标而已:
-- 声明数组 ,key为角标的 table
local arr = {'java', 'python', 'lua'}
-- 声明table,类似java的map
local map = {name='Jack', age=21}
Lua中的数组角标是从1开始,访问的时候与Java中类似:
-- 访问数组,lua数组的角标从1开始
print(arr[1])
Lua中的table可以用key来访问:
-- 访问table
print(map['name'])
print(map.name)
循环
对于table,可以利用for循环来遍历。不过数组和普通table遍历略有差异。
遍历数组:
-- 声明数组 key为索引的 table
local arr = {'java', 'python', 'lua'}
-- 遍历数组
for index,value in ipairs(arr) do
print(index, value)
end
遍历普通table
-- 声明map,也就是table
local map = {name='Jack', age=21}
-- 遍历table
for key,value in pairs(map) do
print(key, value)
end
函数与条件控制
Lua中的条件控制和函数声明与Java类似。
函数
定义函数的语法:
function 函数名( argument1, argument2..., argumentn)
-- 函数体
return 返回值
end
例如,定义一个函数,用来打印数组:
function printArr(arr)
for index, value in ipairs(arr) do
print(value)
end
end
条件控制
类似Java的条件控制,例如if、else语法:
if(布尔表达式)
then
--[ 布尔表达式为 true 时执行该语句块 --]
else
--[ 布尔表达式为 false 时执行该语句块 --]
end
与java不同,布尔表达式中的逻辑运算是基于英文单词:
操作符 | 描述 | 实例 |
---|---|---|
and | 逻辑与操作符。 若 A 为 false,则返回 A,否则返回 B。 | (A and B) 为 false。 |
or | 逻辑或操作符。 若 A 为 true,则返回 A,否则返回 B。 | (A or B) 为 true。 |
not | 逻辑非操作符。与逻辑运算结果相反,如果条件为 true,逻辑非为 false。 | not(A and B) 为 true。 |
实现多级缓存
多级缓存的实现离不开Nginx编程,而Nginx编程又离不开OpenResty。
OpenResty® 是一个基于 Nginx的高性能 Web 平台,用于方便地搭建能够处理超高并发、扩展性极高的动态 Web 应用、Web 服务和动态网关。具备下列特点:
- 具备Nginx的完整功能
- 基于Lua语言进行扩展,集成了大量精良的 Lua 库、第三方模块
- 允许使用Lua自定义业务逻辑、自定义库
官方网站: https://openresty.org/cn/
安装OpenResty
首先要安装OpenResty的依赖开发库,执行命令:
yum install -y pcre-devel openssl-devel gcc --skip-broken
为了便于未来安装或更新软件包,运行下面的命令添加一个openresty仓库。
yum-config-manager --add-repo https://openresty.org/package/centos/openresty.repo
如果提示说命令不存在,则运行:
yum install -y yum-utils
然后再重复上面的命令
安装openresty软件包
yum install -y openresty
安装opm工具
opm是OpenResty的一个管理工具,可以帮助安装一个第三方的Lua模块。
如果想安装命令行工具 opm
,那么可以像下面这样安装 openresty-opm
包:
yum install -y openresty-opm
目录结构
默认情况下,OpenResty安装的目录是:/usr/local/openresty
OpenResty就是在Nginx基础上集成了一些Lua模块。
配置Nginx的环境变量
打开配置文件:
vi /etc/profile
在最下面加入两行:
export NGINX_HOME=/usr/local/openresty/nginx
export PATH=${NGINX_HOME}/sbin:$PATH
NGINX_HOME:后面是OpenResty安装目录下的nginx的目录
然后让配置生效:
source /etc/profile
运行启动
OpenResty底层是基于Nginx的,查看OpenResty目录的nginx目录,结构与windows中安装的nginx基本一致,所以其运行方式跟Nginx基本一致。
# 启动nginx
nginx
# 重新加载配置
nginx -s reload
# 停止
nginx -s stop
修改/usr/local/openresty/nginx/conf/nginx.conf
文件,内容如下:
#user nobody;
worker_processes 1;
error_log logs/error.log;
events {
worker_connections 1024;
}
http {
include mime.types;
default_type application/octet-stream;
sendfile on;
keepalive_timeout 65;
server {
listen 8081;
server_name localhost;
location / {
root html;
index index.html index.htm;
}
error_page 500 502 503 504 /50x.html;
location = /50x.html {
root html;
}
}
}
在Linux的控制台输入命令以启动nginx:
nginx
然后访问页面:http://192.168.xxx.xxx:8081,注意ip地址替换为自己的虚拟机IP。
快速入门
希望达到的多级缓存架构如图:
其中:
-
windows上的nginx用来做反向代理服务,将前端的查询商品的ajax请求代理到OpenResty集群
-
OpenResty集群用来编写多级缓存业务
反向代理流程
现在,商品详情页使用的是假的商品数据。不过在浏览器中,可以看到页面有发起ajax请求查询真实商品数据。
这个请求如下:
请求地址是localhost,端口是80,就被windows上安装的Nginx服务给接收到了。然后代理给了OpenResty集群:
需要在OpenResty中编写业务,查询商品数据并返回到浏览器。
但是这次,先在OpenResty接收请求,返回假的商品数据。
OpenResty监听请求
OpenResty的很多功能都依赖于其目录下的Lua库,需要在nginx.conf中指定依赖库的目录,并导入依赖:
添加对OpenResty的Lua模块的加载
修改/usr/local/openresty/nginx/conf/nginx.conf
文件,在其中的http下面,添加下面代码:
#lua 模块
lua_package_path "/usr/local/openresty/lualib/?.lua;;";
#c模块
lua_package_cpath "/usr/local/openresty/lualib/?.so;;";
监听/api/item路径
修改/usr/local/openresty/nginx/conf/nginx.conf
文件,在nginx.conf的server下面,添加对/api/item这个路径的监听:
location /api/item {
# 默认的响应类型
default_type application/json;
# 响应结果由lua/item.lua文件来决定
content_by_lua_file lua/item.lua;
}
这个监听,就类似于SpringMVC中的@GetMapping("/api/item")
做路径映射。
而content_by_lua_file lua/item.lua
则相当于调用item.lua这个文件,执行其中的业务,把结果返回给用户。相当于java中调用service。
编写item.lua
在/usr/local/openresty/nginx
目录创建文件夹:lua
2)在/usr/local/openresty/nginx/lua
文件夹下,新建文件:item.lua
3)编写item.lua,返回假数据
item.lua中,利用ngx.say()函数返回数据到Response中
ngx.say('{"id":10001,"name":"SALSA AIR","title":"RIMOWA 21寸托运箱拉杆箱 SALSA AIR系列果绿色 820.70.36.4","price":17900,"image":"https://m.360buyimg.com/mobilecms/s720x720_jfs/t6934/364/1195375010/84676/e9f2c55f/597ece38N0ddcbc77.jpg!q70.jpg.webp","category":"拉杆箱","brand":"RIMOWA","spec":"","status":1,"createTime":"2019-04-30T16:00:00.000+00:00","updateTime":"2019-04-30T16:00:00.000+00:00","stock":1399,"sold":83910}')
4)重新加载配置
nginx -s reload
请求参数处理
要返回真实数据,必须根据前端传递来的商品id,查询商品信息才可以。
获取参数的API
OpenResty中提供了一些API用来获取不同类型的前端请求参数:
参数格式 | 参数示例 | 参数解析代码示例 |
---|---|---|
路径占位符 | /item/1001 | |
请求头 | id:1001 | – 获取请求头,返回值是table类型 local headers = ngx.req.get_headers() |
Get请求参数 | ?id=1001 | – 获取GET请求参数,返回值是table类型 local getParams = ngx.req.get_uri_args() |
Post表单参数 | id=1001 | – 读取请求体 ngx.req.read_body() – 获取POST表单参数,返回值是table类型 local postParams = ngx.req.get_post_args() |
JSON参数 | {“id”: 1001} | – 读取请求体 ngx.req.read_body() – 获取body中的json参数,返回值是string类型 local jsonBody = ngx.req.get_body_data() |
获取参数并返回
在前端发起的ajax请求如图:
可以看到商品id是以路径占位符方式传递的,因此可以利用正则表达式匹配的方式来获取ID
获取商品ID
修改/usr/local/openresty/nginx/nginx.conf
文件中监听/api/item的代码,利用正则表达式获取ID:
location ~ /api/item/(\d+) {
# 默认的响应类型
default_type application/json;
# 响应结果由lua/item.lua文件来决定
content_by_lua_file lua/item.lua;
}
拼接ID并返回
修改/usr/loca/openresty/nginx/lua/item.lua
文件,获取id并拼接到结果中返回:
-- 获取商品id
local id = ngx.var[1]
-- 拼接并返回
ngx.say('{"id":' .. id .. ',"name":"SALSA AIR","title":"RIMOWA 21寸托运箱拉杆箱 SALSA AIR系列果绿色 820.70.36.4","price":17900,"image":"https://m.360buyimg.com/mobilecms/s720x720_jfs/t6934/364/1195375010/84676/e9f2c55f/597ece38N0ddcbc77.jpg!q70.jpg.webp","category":"拉杆箱","brand":"RIMOWA","spec":"","status":1,"createTime":"2019-04-30T16:00:00.000+00:00","updateTime":"2019-04-30T16:00:00.000+00:00","stock":1399,"sold":83910}')
重新加载并测试
运行命令以重新加载OpenResty配置:
nginx -s reload
刷新页面可以看到结果中已经带上了ID
查询Tomcat
拿到商品ID后,本应去缓存中查询商品信息,不过目前还未建立nginx、redis缓存。因此,这里先根据商品id去tomcat查询商品信息。实现如图部分:
需要注意的是,OpenResty是在虚拟机,Tomcat是在Windows电脑上。两者IP一定不要搞错了。
发送Http请求的API
nginx提供了内部API用以发送http请求:
local resp = ngx.location.capture("/path",{
method = ngx.HTTP_GET, -- 请求方式
args = {a=1,b=2}, -- get方式传参数
})
返回的响应内容包括:
- resp.status:响应状态码
- resp.header:响应头,是一个table
- resp.body:响应体,就是响应数据
注意:这里的path是路径,并不包含IP和端口。这个请求会被nginx内部的server监听并处理。
但是如果希望这个请求发送到Tomcat服务器,所以还需要编写一个server来对这个路径做反向代理:
location /path {
# 这里是windows电脑的ip和Java服务端口,需要确保windows防火墙处于关闭状态
proxy_pass http://192.168.150.1:8081;
}
因为ngx.location.capture发起的请求,会被反向代理到windows上的Java服务的IP和端口。
封装http工具
下面封装一个发送Http请求的工具,基于ngx.location.capture来实现查询Tomcat。
添加反向代理,到windows的Java服务
因为服务中的接口都是/item开头,所以监听/item路径,代理到windows上的tomcat服务。
修改 /usr/local/openresty/nginx/conf/nginx.conf
文件,添加一个location:
location /item {
proxy_pass http://192.168.150.1:8081;
}
以后只要调用ngx.location.capture("/item")
,就一定能发送请求到windows的tomcat服务。
封装工具类
OpenResty启动时会加载以下两个目录中的工具文件:
所以,自定义的http工具也需要放到这个目录下。
在/usr/local/openresty/lualib
目录下,新建一个common.lua文件:
vi /usr/local/openresty/lualib/common.lua
内容如下:
-- 封装函数,发送http请求,并解析响应
local function read_http(path, params)
local resp = ngx.location.capture(path,{
method = ngx.HTTP_GET,
args = params,
})
if not resp then
-- 记录错误信息,返回404
ngx.log(ngx.ERR, "http not found, path: ", path , ", args: ", args)
ngx.exit(404)
end
return resp.body
end
-- 将方法导出
local _M = {
read_http = read_http
}
return _M
这个工具将read_http函数封装到_M这个table类型的变量中,并且返回,这类似于导出。
使用的时候,可以利用require('common')
来导入该函数库,这里的common是函数库的文件名。
实现商品查询
最后修改/usr/local/openresty/lua/item.lua
文件,利用刚刚封装的函数库实现对tomcat的查询:
-- 引入自定义common工具模块,返回值是common中返回的 _M
local common = require("common")
-- 从 common中获取read_http这个函数
local read_http = common.read_http
-- 获取路径参数
local id = ngx.var[1]
-- 根据id查询商品
local itemJSON = read_http("/item/".. id, nil)
-- 根据id查询商品库存
local itemStockJSON = read_http("/item/stock/".. id, nil)
CJSON工具类
OpenResty提供了一个cjson的模块用来处理JSON的序列化和反序列化。
官方地址: https://github.com/openresty/lua-cjson/
- 引入cjson模块:
local cjson = require "cjson"
- 序列化:
local obj = {
name = 'jack',
age = 21
}
-- 把 table 序列化为 json
local json = cjson.encode(obj)
- 反序列化:
local json = '{"name": "jack", "age": 21}'
-- 反序列化 json为 table
local obj = cjson.decode(json);
print(obj.name)
实现Tomcat查询
修改之前的item.lua中的业务,添加json处理功能:
-- 导入common函数库
local common = require('common')
local read_http = common.read_http
-- 导入cjson库
local cjson = require('cjson')
-- 获取路径参数
local id = ngx.var[1]
-- 根据id查询商品
local itemJSON = read_http("/item/".. id, nil)
-- 根据id查询商品库存
local itemStockJSON = read_http("/item/stock/".. id, nil)
-- JSON转化为lua的table
local item = cjson.decode(itemJSON)
local stock = cjson.decode(stockJSON)
-- 组合数据
item.stock = stock.stock
item.sold = stock.sold
-- 把item序列化为json 返回结果
ngx.say(cjson.encode(item))
基于ID的负载均衡
刚才的代码中的Tomcat是单机部署。而实际开发中,Tomcat一定是集群模式:
因此,OpenResty需要对tomcat集群做负载均衡。
而默认的负载均衡规则是轮询模式,当查询/item/10001时:
- 第一次会访问8081端口的tomcat服务,在该服务内部就形成了JVM进程缓存
- 第二次会访问8082端口的tomcat服务,该服务内部没有JVM缓存(因为JVM缓存无法共享),会查询数据库
- …
因为轮询的原因,第一次查询8081形成的JVM缓存并未生效,直到下一次再次访问到8081时才可以生效,缓存命中率太低了。
该如何解决呢?
如果能让同一个商品,每次查询时都访问同一个Tomcat服务,那么JVM缓存就一定能生效了。
也就是说,需要根据商品id做负载均衡,而不是轮询。
原理
nginx提供了基于请求路径做负载均衡的算法:
nginx根据请求路径做hash运算,把得到的数值对Tomcat服务的数量取余,余数是几,就访问第几个服务,实现负载均衡。
例如:
- 请求路径是 /item/10001
- tomcat总数为2台(8081、8082)
- 对请求路径/item/1001做hash运算求余的结果为1
- 则访问第一个tomcat服务,也就是8081
只要id不变,每次hash运算结果也不会变,那就可以保证同一个商品,一直访问同一个Tomcat服务,确保JVM缓存生效。
实现
修改/usr/local/openresty/nginx/conf/nginx.conf
文件,实现基于ID做负载均衡。
首先,定义tomcat集群,并设置基于路径做负载均衡:
upstream tomcat-cluster {
hash $request_uri;
server 192.168.150.1:8081;
server 192.168.150.1:8082;
}
然后,修改对tomcat服务的反向代理,目标指向tomcat集群:
location /item {
proxy_pass http://tomcat-cluster;
}
重新加载OpenResty
nginx -s reload
Redis缓存预热
Redis缓存会面临冷启动问题:
冷启动:服务刚刚启动时,Redis中并没有缓存,如果所有商品数据都在第一次查询时添加缓存,可能会给数据库带来较大压力。
缓存预热:在实际开发中,可以利用大数据统计用户访问的热点数据,在项目启动时将这些热点数据提前查询并保存到Redis中。
步骤
- 利用Docker安装Redis
docker run --name redis -p 6379:6379 -d redis redis-server --appendonly yes
- 在服务中引入Redis依赖
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
- 配置Redis地址
spring:
redis:
host: 192.168.150.101
- 编写初始化类
缓存预热需要在项目启动时完成,并且必须是拿到RedisTemplate之后。
这里利用InitializingBean接口来实现,因为InitializingBean可以在对象被Spring创建并且成员变量全部注入后执行。
@Component
public class RedisHandler implements InitializingBean {
@Autowired
private StringRedisTemplate redisTemplate;
@Autowired
private IItemService itemService;
@Autowired
private IItemStockService stockService;
private static final ObjectMapper MAPPER = new ObjectMapper();
@Override
public void afterPropertiesSet() throws Exception {
// 初始化缓存
// 1.查询商品信息
List<Item> itemList = itemService.list();
// 2.放入缓存
for (Item item : itemList) {
// 2.1.item序列化为JSON
String json = MAPPER.writeValueAsString(item);
// 2.2.存入redis
redisTemplate.opsForValue().set("item:id:" + item.getId(), json);
}
// 3.查询商品库存信息
List<ItemStock> stockList = stockService.list();
// 4.放入缓存
for (ItemStock stock : stockList) {
// 2.1.item序列化为JSON
String json = MAPPER.writeValueAsString(stock);
// 2.2.存入redis
redisTemplate.opsForValue().set("item:stock:id:" + stock.getId(), json);
}
}
}
查询Redis缓存
现在,Redis缓存已经准备就绪,可以在OpenResty中实现查询Redis的逻辑了。如下图红框所示:
当请求进入OpenResty之后:
- 优先查询Redis缓存
- 如果Redis缓存未命中,再查询Tomcat
封装Redis工具
OpenResty提供了操作Redis的模块,只要引入该模块就能直接使用。但是为了方便,将Redis操作封装到之前的common.lua工具库中。
修改/usr/local/openresty/lualib/common.lua
文件:
- 引入Redis模块,并初始化Redis对象
-- 导入redis
local redis = require('resty.redis')
-- 初始化redis
local red = redis:new()
red:set_timeouts(1000, 1000, 1000)
- 封装函数,用来释放Redis连接(其实是放入连接池)
-- 关闭redis连接的工具方法,其实是放入连接池
local function close_redis(red)
local pool_max_idle_time = 10000 -- 连接的空闲时间,单位是毫秒
local pool_size = 100 --连接池大小
local ok, err = red:set_keepalive(pool_max_idle_time, pool_size)
if not ok then
ngx.log(ngx.ERR, "放入redis连接池失败: ", err)
end
end
- 封装函数,根据key查询Redis数据
-- 查询redis的方法 ip和port是redis地址,key是查询的key
local function read_redis(ip, port, key)
-- 获取一个连接
local ok, err = red:connect(ip, port)
if not ok then
ngx.log(ngx.ERR, "连接redis失败 : ", err)
return nil
end
-- 查询redis
local resp, err = red:get(key)
-- 查询失败处理
if not resp then
ngx.log(ngx.ERR, "查询Redis失败: ", err, ", key = " , key)
end
--得到的数据为空处理
if resp == ngx.null then
resp = nil
ngx.log(ngx.ERR, "查询Redis数据为空, key = ", key)
end
close_redis(red)
return resp
end
- 到处
-- 将方法导出
local _M = {
read_http = read_http,
read_redis = read_redis
}
return _M
实现Redis查询
接下来就可以去修改item.lua文件,实现对Redis的查询了。
查询逻辑是:
- 根据id查询Redis
- 如果查询失败则继续查询Tomcat
- 将查询结果返回
- 修改
/usr/local/openresty/lua/item.lua
文件,添加一个查询函数:
-- 导入common函数库
local common = require('common')
local read_http = common.read_http
local read_redis = common.read_redis
-- 封装查询函数
function read_data(key, path, params)
-- 查询本地缓存
local val = read_redis("127.0.0.1", 6379, key)
-- 判断查询结果
if not val then
ngx.log(ngx.ERR, "redis查询失败,尝试查询http, key: ", key)
-- redis查询失败,去查询http
val = read_http(path, params)
end
-- 返回数据
return val
end
- 而后修改商品查询、库存查询的业务:
完整的item.lua代码
-- 导入common函数库
local common = require('common')
local read_http = common.read_http
local read_redis = common.read_redis
-- 导入cjson库
local cjson = require('cjson')
-- 封装查询函数
function read_data(key, path, params)
-- 查询本地缓存
local val = read_redis("127.0.0.1", 6379, key)
-- 判断查询结果
if not val then
ngx.log(ngx.ERR, "redis查询失败,尝试查询http, key: ", key)
-- redis查询失败,去查询http
val = read_http(path, params)
end
-- 返回数据
return val
end
-- 获取路径参数
local id = ngx.var[1]
-- 查询商品信息
local itemJSON = read_data("item:id:" .. id, "/item/" .. id, nil)
-- 查询库存信息
local stockJSON = read_data("item:stock:id:" .. id, "/item/stock/" .. id, nil)
-- JSON转化为lua的table
local item = cjson.decode(itemJSON)
local stock = cjson.decode(stockJSON)
-- 组合数据
item.stock = stock.stock
item.sold = stock.sold
-- 把item序列化为json 返回结果
ngx.say(cjson.encode(item))
Nginx本地缓存
现在,整个多级缓存中只差最后一环,也就是nginx的本地缓存了。如图:
本地缓存API
OpenResty为Nginx提供了shard dict的功能,可以在nginx的多个worker之间共享数据,实现缓存功能。
- 开启共享字典,在nginx.conf的http下添加配置:
# 共享字典,也就是本地缓存,名称叫做:item_cache,大小150m
lua_shared_dict item_cache 150m;
- 操作共享字典:
-- 获取本地缓存对象
local item_cache = ngx.shared.item_cache
-- 存储, 指定key、value、过期时间,单位s,默认为0代表永不过期
item_cache:set('key', 'value', 1000)
-- 读取
local val = item_cache:get('key')
实现本地缓存查询
- 修改
/usr/local/openresty/lua/item.lua
文件,修改read_data查询函数,添加本地缓存逻辑:
-- 导入共享词典,本地缓存
local item_cache = ngx.shared.item_cache
-- 封装查询函数
function read_data(key, expire, path, params)
-- 查询本地缓存
local val = item_cache:get(key)
if not val then
ngx.log(ngx.ERR, "本地缓存查询失败,尝试查询Redis, key: ", key)
-- 查询redis
val = read_redis("127.0.0.1", 6379, key)
-- 判断查询结果
if not val then
ngx.log(ngx.ERR, "redis查询失败,尝试查询http, key: ", key)
-- redis查询失败,去查询http
val = read_http(path, params)
end
end
-- 查询成功,把数据写入本地缓存
item_cache:set(key, val, expire)
-- 返回数据
return val
end
- 修改item.lua中查询商品和库存的业务,实现最新的read_data函数:
其实就是多了缓存时间参数,过期后nginx缓存会自动删除,下次访问即可更新缓存。
这里给商品基本信息设置超时时间为30分钟,库存为1分钟。
因为库存更新频率较高,如果缓存时间过长,可能与数据库差异较大。
完整的item.lua文件:
-- 导入common函数库
local common = require('common')
local read_http = common.read_http
local read_redis = common.read_redis
-- 导入cjson库
local cjson = require('cjson')
-- 导入共享词典,本地缓存
local item_cache = ngx.shared.item_cache
-- 封装查询函数
function read_data(key, expire, path, params)
-- 查询本地缓存
local val = item_cache:get(key)
if not val then
ngx.log(ngx.ERR, "本地缓存查询失败,尝试查询Redis, key: ", key)
-- 查询redis
val = read_redis("127.0.0.1", 6379, key)
-- 判断查询结果
if not val then
ngx.log(ngx.ERR, "redis查询失败,尝试查询http, key: ", key)
-- redis查询失败,去查询http
val = read_http(path, params)
end
end
-- 查询成功,把数据写入本地缓存
item_cache:set(key, val, expire)
-- 返回数据
return val
end
-- 获取路径参数
local id = ngx.var[1]
-- 查询商品信息
local itemJSON = read_data("item:id:" .. id, 1800, "/item/" .. id, nil)
-- 查询库存信息
local stockJSON = read_data("item:stock:id:" .. id, 60, "/item/stock/" .. id, nil)
-- JSON转化为lua的table
local item = cjson.decode(itemJSON)
local stock = cjson.decode(stockJSON)
-- 组合数据
item.stock = stock.stock
item.sold = stock.sold
-- 把item序列化为json 返回结果
ngx.say(cjson.encode(item))
缓存同步
大多数情况下,浏览器查询到的都是缓存数据,如果缓存数据与数据库数据存在较大差异,可能会产生比较严重的后果。所以必须保证数据库数据、缓存数据的一致性,这就是缓存与数据库的同步。
数据同步策略
缓存数据同步的常见方式有三种:
设置有效期:给缓存设置有效期,到期后自动删除。再次查询时更新
- 优势:简单、方便
- 缺点:时效性差,缓存过期之前可能不一致
- 场景:更新频率较低,时效性要求低的业务
同步双写:在修改数据库的同时,直接修改缓存
- 优势:时效性强,缓存与数据库强一致
- 缺点:有代码侵入,耦合度高;
- 场景:对一致性、时效性要求较高的缓存数据
**异步通知:**修改数据库时发送事件通知,相关服务监听到通知后修改缓存数据
- 优势:低耦合,可以同时通知多个缓存服务
- 缺点:时效性一般,可能存在中间不一致状态
- 场景:时效性要求一般,有多个服务需要同步
而异步实现又可以基于MQ或者Canal来实现:
基于MQ的异步通知:
解读:
- 商品服务完成对数据的修改后,只需要发送一条消息到MQ中。
- 缓存服务监听MQ消息,然后完成对缓存的更新
依然有少量的代码侵入。
基于Canal的通知
解读:
- 商品服务完成商品修改后,业务直接结束,没有任何代码侵入
- Canal监听MySQL变化,当发现变化后,立即通知缓存服务
- 缓存服务接收到canal通知,更新缓存
代码零侵入
初识Canal
Canal译意为水道/管道/沟渠,canal是阿里巴巴旗下的一款开源项目,基于Java开发。基于数据库增量日志解析,提供增量数据订阅&消费。
GitHub的地址:https://github.com/alibaba/canal
Canal是基于mysql的主从同步来实现的,MySQL主从同步的原理如下:
- MySQL master 将数据变更写入二进制日志( binary log),其中记录的数据叫做binary log events
- MySQL slave 将 master 的 binary log events拷贝到它的中继日志(relay log)
- MySQL slave 重放 relay log 中事件,将数据变更反映它自己的数据
而Canal就是把自己伪装成MySQL的一个slave节点,从而监听master的binary log变化。再把得到的变化信息通知给Canal的客户端,进而完成对其它数据库的同步。
安装Canal
Canal是基于MySQL的主从同步功能,因此必须先开启MySQL的主从功能才可以。
打开mysql容器挂载的日志文件,一般在/tmp/mysql/conf
目录:
修改文件:
vi /tmp/mysql/conf/my.cnf
添加内容:
log-bin=/var/lib/mysql/mysql-bin
binlog-do-db=item
配置解读:
-
log-bin=/var/lib/mysql/mysql-bin
:设置binary log文件的存放地址和文件名,叫做mysql-bin -
binlog-do-db=heima
:指定对哪个database记录binary log events,这里记录item这个库
最终效果:
[mysqld]
skip-name-resolve
character_set_server=utf8
datadir=/var/lib/mysql
server-id=1000
log-bin=/var/lib/mysql/mysql-bin
binlog-do-db=item
添加一个仅用于数据同步的账户,出于安全考虑,这里仅提供对heima这个库的操作权限。
create user canal@'%' IDENTIFIED by 'canal';
GRANT SELECT, REPLICATION SLAVE, REPLICATION CLIENT,SUPER ON *.* TO 'canal'@'%' identified by 'canal';
FLUSH PRIVILEGES;
重启mysql容器即可
docker restart mysql
测试设置是否成功:在mysql控制台,或者Navicat中,输入命令:
show master status;
需要创建一个网络,将MySQL、Canal、MQ放到同一个Docker网络中:
docker network create item
让mysql加入这个网络:
docker network connect item mysql
将从官网下载下来的镜像压缩包传入虚拟机并解压为canal.tar,然后通过命令进行导入
docker load -i canal.tar
运行命令创建Canal容器:
docker run -p 11111:11111 --name canal \
-e canal.destinations=heima \
-e canal.instance.master.address=mysql:3306 \
-e canal.instance.dbUsername=canal \
-e canal.instance.dbPassword=canal \
-e canal.instance.connectionCharset=UTF-8 \
-e canal.instance.tsdb.enable=true \
-e canal.instance.gtidon=false \
-e canal.instance.filter.regex=item\\..* \
--network heima \
-d canal/canal-server:v1.1.5
-
-p 11111:11111
:这是canal的默认监听端口 -
-e canal.instance.master.address=mysql:3306
:数据库地址和端口,如果不知道mysql容器地址,可以通过docker inspect 容器id
来查看 -
-e canal.instance.dbUsername=canal
:数据库用户名 -
-e canal.instance.dbPassword=canal
:数据库密码 -
-e canal.instance.filter.regex=
:要监听的表名称
表名称监听支持的语法:
mysql 数据解析关注的表,Perl正则表达式.
多个正则之间以逗号(,)分隔,转义符需要双斜杠(\)
常见例子:
- 所有表:.* or .*\\…*
- canal schema下所有表: canal\\…*
- canal下的以canal打头的表:canal\\.canal.*
- canal schema下的一张表:canal.test1
- 多个规则组合使用然后以逗号隔开:canal\\…*,mysql.test1,mysql.test2
监听Canal
Canal提供了各种语言的客户端,当Canal监听到binlog变化时,会通知Canal的客户端。
可以利用Canal提供的Java客户端,监听Canal通知消息。当收到变化的消息时,完成对缓存的更新。
不过这里会使用GitHub上的第三方开源的canal-starter客户端。
下载地址:https://github.com/NormanGyllenhaal/canal-client
与SpringBoot完美整合,自动装配,比官方客户端要简单好用很多。
引入依赖
<dependency>
<groupId>top.javatool</groupId>
<artifactId>canal-spring-boot-starter</artifactId>
<version>1.2.1-RELEASE</version>
</dependency>
编写配置
canal:
destination: heima # canal的集群名字,要与安装canal时设置的名称一致
server: 192.168.150.101:11111 # canal服务地址
修改Item实体类
@Data
@TableName("tb_item")
public class Item {
@TableId(type = IdType.AUTO)
@Id
private Long id;//商品id
@Column(name = "name")
private String name;//商品名称
private String title;//商品标题
private Long price;//价格(分)
private String image;//商品图片
private String category;//分类名称
private String brand;//品牌名称
private String spec;//规格
private Integer status;//商品状态 1-正常,2-下架
private Date createTime;//创建时间
private Date updateTime;//更新时间
@TableField(exist = false)
@Transient
private Integer stock;
@TableField(exist = false)
@Transient
private Integer sold;
}
编写监听器
通过实现EntryHandler<T>
接口编写监听器,监听Canal消息。注意两点:
- 实现类通过
@CanalTable("tb_item")
指定监听的表信息 - EntryHandler的泛型是与表对应的实体类
@CanalTable("tb_item")
@Component
public class ItemHandler implements EntryHandler<Item> {
@Autowired
private RedisHandler redisHandler;
@Autowired
private Cache<Long, Item> itemCache;
@Override
public void insert(Item item) {
// 写数据到JVM进程缓存
itemCache.put(item.getId(), item);
// 写数据到redis
redisHandler.saveItem(item);
}
@Override
public void update(Item before, Item after) {
// 写数据到JVM进程缓存
itemCache.put(after.getId(), after);
// 写数据到redis
redisHandler.saveItem(after);
}
@Override
public void delete(Item item) {
// 删除数据到JVM进程缓存
itemCache.invalidate(item.getId());
// 删除数据到redis
redisHandler.deleteItemById(item.getId());
}
}
在这里对Redis的操作都封装到了RedisHandler这个对象中,是在之前做缓存预热时编写的一个类,内容如下:
@Component
public class RedisHandler implements InitializingBean {
@Autowired
private StringRedisTemplate redisTemplate;
@Autowired
private IItemService itemService;
@Autowired
private IItemStockService stockService;
private static final ObjectMapper MAPPER = new ObjectMapper();
@Override
public void afterPropertiesSet() throws Exception {
// 初始化缓存
// 1.查询商品信息
List<Item> itemList = itemService.list();
// 2.放入缓存
for (Item item : itemList) {
// 2.1.item序列化为JSON
String json = MAPPER.writeValueAsString(item);
// 2.2.存入redis
redisTemplate.opsForValue().set("item:id:" + item.getId(), json);
}
// 3.查询商品库存信息
List<ItemStock> stockList = stockService.list();
// 4.放入缓存
for (ItemStock stock : stockList) {
// 2.1.item序列化为JSON
String json = MAPPER.writeValueAsString(stock);
// 2.2.存入redis
redisTemplate.opsForValue().set("item:stock:id:" + stock.getId(), json);
}
}
public void saveItem(Item item) {
try {
String json = MAPPER.writeValueAsString(item);
redisTemplate.opsForValue().set("item:id:" + item.getId(), json);
} catch (JsonProcessingException e) {
throw new RuntimeException(e);
}
}
public void deleteItemById(Long id) {
redisTemplate.delete("item:id:" + id);
}
}
附录
加载OpenResty的lua模块:
#lua 模块
lua_package_path "/usr/local/openresty/lualib/?.lua;;";
#c模块
lua_package_cpath "/usr/local/openresty/lualib/?.so;;";
common.lua
-- 封装函数,发送http请求,并解析响应
local function read_http(path, params)
local resp = ngx.location.capture(path,{
method = ngx.HTTP_GET,
args = params,
})
if not resp then
-- 记录错误信息,返回404
ngx.log(ngx.ERR, "http not found, path: ", path , ", args: ", args)
ngx.exit(404)
end
return resp.body
end
-- 将方法导出
local _M = {
read_http = read_http
}
return _M
释放Redis连接API:
-- 关闭redis连接的工具方法,其实是放入连接池
local function close_redis(red)
local pool_max_idle_time = 10000 -- 连接的空闲时间,单位是毫秒
local pool_size = 100 --连接池大小
local ok, err = red:set_keepalive(pool_max_idle_time, pool_size)
if not ok then
ngx.log(ngx.ERR, "放入redis连接池失败: ", err)
end
end
读取Redis数据的API:文章来源:https://www.toymoban.com/news/detail-608297.html
-- 查询redis的方法 ip和port是redis地址,key是查询的key
local function read_redis(ip, port, key)
-- 获取一个连接
local ok, err = red:connect(ip, port)
if not ok then
ngx.log(ngx.ERR, "连接redis失败 : ", err)
return nil
end
-- 查询redis
local resp, err = red:get(key)
-- 查询失败处理
if not resp then
ngx.log(ngx.ERR, "查询Redis失败: ", err, ", key = " , key)
end
--得到的数据为空处理
if resp == ngx.null then
resp = nil
ngx.log(ngx.ERR, "查询Redis数据为空, key = ", key)
end
close_redis(red)
return resp
end
开启共享词典:文章来源地址https://www.toymoban.com/news/detail-608297.html
# 共享字典,也就是本地缓存,名称叫做:item_cache,大小150m
lua_shared_dict item_cache 150m;
到了这里,关于Redis多级缓存的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!