计算机视觉--距离变换算法的实战应用

这篇具有很好参考价值的文章主要介绍了计算机视觉--距离变换算法的实战应用。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

计算机视觉--距离变换算法的实战应用,计算机视觉,Dream的茶话会,计算机视觉,算法,人工智能,机器学习,原力计划

前言: Hello大家好,我是Dream。 计算机视觉CV是人工智能一个非常重要的领域。 在本次的距离变换任务中,我们将使用D4距离度量方法来对图像进行处理。通过这次实验,我们可以更好地理解距离度量在计算机视觉中的应用。希望大家对计算机视觉和图像处理有了更深入的了解。让我们一起来看看实际的计算结果和可视化效果吧!

距离变换是一种常用的方法,它可以帮助我们计算出每个像素点与最近的前景像素点之间的距离。这对于图像分析、目标检测和图像配准等任务至关重要。D4距离定义为两个像素点之间在水平和垂直方向上的绝对距离之和。通过这种度量方式,我们可以获得每个像素点到最近的前景像素点的距离。为了测试距离变换的效果,我们首先随机生成了一张8*8大小的图像,并随机选取了其中的10个像素点作为前景像素。前景像素用1表示,背景像素用0表示。接下来,我们实现了一个距离函数,用于计算两个像素点之间的D4距离。然后,我们通过遍历图像中的每个像素点,计算其与与其最近的前景像素点的距离,并将结果保存到一个距离矩阵中。最后,我们将原始图像和距离变换后的结果进行可视化展示。使用灰度图像表示原始图像,黑色像素点表示随机生成的前景像素点。而距离变换结果则使用“cool”颜色映射进行显示,较远的像素点呈现较浅的颜色,较近的像素点呈现较深的颜色。

1. 导入必要的库

首先,我们需要导入必要的库,NumPy和Matplotlib库。

import numpy as np
import matplotlib.pyplot as plt

2. 生成随机图像,定义距离度量

随机生成 0/1 像素值的图片,大小为 8*8,0 为背景像素,1 为前景像素

image = np.random.randint(2, size=(8, 8))
print('原始图片:\n', image)

计算机视觉--距离变换算法的实战应用,计算机视觉,Dream的茶话会,计算机视觉,算法,人工智能,机器学习,原力计划
随机选取 10 个前景像素:

for i in range(10):
    x, y = np.random.randint(8, size=2)
    image[x, y] = 1
    
print('选取前景像素后的图片:\n', image)

选取前景像素后的图片:
[[1 0 1 1 0 1 0 1]
[0 1 1 0 1 0 0 0]
[1 1 1 1 1 1 0 1]
[0 0 1 0 1 0 1 0]
[0 1 1 0 0 1 0 1]
[0 1 1 1 1 1 1 1]
[1 1 1 1 1 0 1 1]
[0 1 0 1 0 0 1 1]]

3. 进行距离变换

D4距离介绍: 像素p(x,y)和q(s,t)之间的D4距离定义为: = |x – s| + |y – t|
D4距离变换算法是一种常用的图像处理算法,用于计算图像中像素点与最近的前景像素点之间的距离。
在D4距离变换算法中,D4代表了四邻域距离度量。它仅考虑像素点之间在水平和垂直方向上的差异,而忽略了对角线方向上的差异

算法步骤如下:

  1. 初始化一个与原始图像大小相同的距离矩阵,其中所有背景像素点的距离值为0。
  2. 从图像中选择一个前景像素点作为起点。
  3. 遍历图像中的每个背景像素点,并计算其到起点像素点的D4距离。
  4. 比较当前像素点与起点之间的距离与之前计算得到的最小距离,如果当前距离更小,则更新该像素点的距离值为当前距离。
  5. 重复第3步和第4步,直到遍历完所有的背景像素点。
  6. 选择下一个前景像素点作为起点,重复以上步骤,直到遍历完所有的前景像素点。
  7. 最终得到的距离矩阵即为距离变换后的结果,其中每个像素点的距离值表示该像素点到离它最近的前景像素点的距离。

定义距离函数

def dist(p1, p2, metric='D4'):
    if metric == 'D4':
        return abs(p1[0] - p2[0]) + abs(p1[1] - p2[1])
    elif metric == 'D8':
        return max(abs(p1[0] - p2[0]), abs(p1[1] - p2[1]))

生成距离矩阵

matrix = np.zeros_like(image)
for i in range(image.shape[0]):
    for j in range(image.shape[1]):
        # 背景像素的距离为 0
        if image[i, j] == 0:
            matrix[i, j] = 0
        else:  
            # 初始化为一个巨大的数字
            min_dist = 99999           
            for m in range(image.shape[0]):
                for n in range(image.shape[1]):
                    # 只计算背景像素的距离
                    if image[m, n] == 0:
                        d = dist((i, j), (m, n), metric='D4')
                        if d < min_dist:
                            min_dist = d
            matrix[i, j] = min_dist
            
print('距离变换后的结果:\n', matrix)

距离变换后的结果:
[[1 0 1 1 0 1 0 1]
[0 1 1 0 1 0 0 0]
[1 1 2 1 2 1 0 1]
[0 0 1 0 1 0 1 0]
[0 1 1 0 0 1 0 1]
[0 1 2 1 1 1 1 2]
[1 2 1 2 1 0 1 2]
[0 1 0 1 0 0 1 2]]

4. 可视化处理

在这里,我们使用灰度图像表示原始图像,黑色像素点表示随机生成的像素点。使用“cool”颜色映射可视化距离变换的结果。
Original Image

plt.imshow(image, cmap='gray')
plt.title('Original Image')
plt.show()

计算机视觉--距离变换算法的实战应用,计算机视觉,Dream的茶话会,计算机视觉,算法,人工智能,机器学习,原力计划
Distance Transformed Image

plt.imshow(matrix, cmap='cool')
plt.title('Distance Transformed Image')
plt.colorbar()
plt.show()

计算机视觉--距离变换算法的实战应用,计算机视觉,Dream的茶话会,计算机视觉,算法,人工智能,机器学习,原力计划
本文介绍了计算机视觉中的距离度量,并使用随机生成的像素点进行了测试,并对计算结果进行了可视化展示。下面我会继续扩充一下这篇文章。

5. 结果分析

通过上述代码,我们可以得到距离变换后的结果。在结果中,黑色像素点表示随机生成的前景像素点,其他颜色表示每个像素点到最近的前景像素点的距离。我们可以看到,距离变换后的图像可以清晰地展示出各个像素点到前景像素点的距离信息。较远的像素点呈现较浅的颜色,而较近的像素点呈现较深的颜色。

总结

距离度量在计算机视觉CV领域有着广泛的应用。如图像分割、图像配准、目标检测和目标跟踪等任务中,都需要计算像素之间的距离来对图像进行处理和分析。而距离变换则可以帮助我们更好地理解像素之间的关系和结构,并为后续的图像处理工作提供基础和参考。

本期推荐:
Python自动化办公应用大全(ChatGPT版):从零开始教编程小白一键搞定烦琐工作(上下册)
计算机视觉--距离变换算法的实战应用,计算机视觉,Dream的茶话会,计算机视觉,算法,人工智能,机器学习,原力计划文章来源地址https://www.toymoban.com/news/detail-608560.html

到了这里,关于计算机视觉--距离变换算法的实战应用的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 计算机视觉教程2-2:详解图像滤波算法(附Python实战)

    图像滤波按图像域可分为两种类型: 邻域滤波(Spatial Domain Filter) ,其本质是数字窗口上的数学运算。一般用于图像平滑、图像锐化、特征提取(如纹理测量、边缘检测)等,邻域滤波使用邻域算子—— 利用给定像素周围像素值以决定此像素最终输出的一种算子 频域滤波(Freque

    2024年02月06日
    浏览(60)
  • 计算机视觉的应用10-图片中的表格结构识别与提取实战

    大家好,我是微学AI,今天给大家介绍一下计算机视觉的应用10-图片中的表格结构识别与提取实战,表格结构识别在信息处理领域中具有广泛应用,但由于表格的多样性和复杂性,以及难以准确解析的布局和格式,传统的方法往往存在一定的局限性。本项目基于深度学习技术

    2024年02月13日
    浏览(39)
  • 从算法到应用:美颜SDK背后的计算机视觉原理解析

    美颜SDK能够通过一系列的算法让用户在拍摄自拍照或视频时可以轻松地获得更加美丽的效果。接下来,小编将深入探讨美颜SDK背后的计算机视觉原理,揭秘其实现的关键算法及其应用。 1.人脸检测与定位 人脸检测算法通常基于深度学习技术,如卷积神经网络(CNN)。通过训练

    2024年04月11日
    浏览(37)
  • 线性变换与计算机视觉的发展

    计算机视觉(Computer Vision)是一门研究如何让计算机理解和解析人类视觉系统所处的环境的科学。它涉及到许多领域,包括图像处理、模式识别、机器学习等。线性变换(Linear Transform)是计算机视觉中的一个基本概念,它可以用来处理图像和其他多维数据。 线性变换是一种将一个

    2024年02月22日
    浏览(45)
  • 【计算机视觉:算法和应用】第二章:图像形成——2.3数码相机

    2.1几何图元与变换 2.2相机辐射成像        从一个或多个光源开始,在世界中一个或多个表面反射并通过相机镜头后,光最终到达成像传感器。到达传感器的光子是如何转换为我们在数字图像上看到的数字(R,G,B)值的呢?在这一节,我们构建了一个简单的模型来解释大多数

    2024年01月19日
    浏览(62)
  • 【计算机视觉:算法和应用】第三章:图像处理——3.2线性滤波

    【计算机视觉:算法和应用】第二章:图像形成——2.1 几何图元与变换_Lu.马夋的博客-CSDN博客 【计算机视觉:算法和应用】第二章:图像形成——2.2相机辐射成像-CSDN博客 【计算机视觉:算法和应用】第二章:图像形成——2.3数码相机-CSDN博客 【计算机视觉:算法和应用】

    2024年02月03日
    浏览(48)
  • 【计算机视觉:算法和应用】第二章:图像形成——2.2相机辐射成像

           在对图像生成过程进行建模时,我们已经描述了世界中的三维几何特征是如何投影到图像中的二维特征的。然而,图像不是由二维特征组陈大哥,而是由离散的颜色或强度值组成的。这些值是哪里来的呢?他们是如何与环境中的光源,表面属性和几何,相机光学以及

    2024年02月03日
    浏览(52)
  • 计算机视觉-图像的傅里叶变换

    😊😊😊 欢迎来到本博客 😊😊😊 本次博客内容将继续讲解关于OpenCV的相关知识 🎉 作者简介 : ⭐️⭐️⭐️ 目前计算机研究生在读。主要研究方向是人工智能和群智能算法方向。目前熟悉python网页爬虫、机器学习、计算机视觉(OpenCV)、群智能算法。然后正在学习深度

    2023年04月08日
    浏览(38)
  • 【机器学习算法】决策树和随机森林在计算机视觉中的应用

    决策树和随机森林在计算机视觉中有着广泛的应用。决策树作为一种简单而强大的分类模型,可以用于图像分类、目标检测、特征提取等任务。它能够根据图像的特征逐层进行判断和分类,从而实现对图像数据的智能分析和理解。随机森林作为一种集成学习方法,利用多棵决

    2024年04月13日
    浏览(58)
  • 【计算机视觉】图像增强----图像的傅立叶变换

    个人简介:  📦个人主页:赵四司机 🏆学习方向:JAVA后端开发  ⏰往期文章:SpringBoot项目整合微信支付 🔔博主推荐网站:牛客网 刷题|面试|找工作神器 📣种一棵树最好的时间是十年前,其次是现在! 💖喜欢的话麻烦点点关注喔,你们的支持是我的最大动力。 目录 一:

    2024年02月04日
    浏览(35)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包