计算机视觉--利用HSV和YIQ颜色空间处理图像噪声

这篇具有很好参考价值的文章主要介绍了计算机视觉--利用HSV和YIQ颜色空间处理图像噪声。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

计算机视觉--利用HSV和YIQ颜色空间处理图像噪声,计算机视觉,计算机视觉,人工智能,opencv,图像处理,原力计划

前言: Hello大家好,我是Dream。 今天我们将利用HSV和YIQ颜色空间处理图像噪声。在本次实验中,我们使用任意一张图片,通过RGB转HSV和YIQ的操作,加入了椒盐噪声并将其转换回RGB格式,最终实现对图像的噪声处理。一起来看看吧~

1.导入库函数

首先,我们导入需要的库。包括numpy用于处理数组数据,cv2用于图像处理,matplotlib用于可视化展示。

import numpy as np
import cv2
from matplotlib import pyplot as plt

2.导入原图

接下来,我们导入原始图像,并将其转换为RGB格式以便于显示。

img = cv2.imread('test.jpg')
img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)

3.显示原图

然后,我们使用matplotlib将原始RGB图像显示出来。

plt.imshow(img)
plt.title('Original RGB image')
plt.show()

计算机视觉--利用HSV和YIQ颜色空间处理图像噪声,计算机视觉,计算机视觉,人工智能,opencv,图像处理,原力计划

4.将RGB图像转换为HSV和YIQ格式

我们使用cv2中的cvtColor函数将RGB图像转换为HSV和YIQ格式。COLOR_RGB2HSV和COLOR_RGB2YCrCb表示转换为对应格式。

img_hsv = cv2.cvtColor(img,cv2.COLOR_RGB2HSV)
img_yiq = cv2.cvtColor(img,cv2.COLOR_RGB2YCrCb)

5.在HSV的H通道加入椒盐噪声

在HSV格式的图像中,我们选择了H通道。通过随机选择像素点的方式,在该像素点的H通道上加入椒盐噪声。具体操作是将该像素点的H值设置为255。

img_hsv_salt = img_hsv.copy()
# 获取图像行数、列数和通道数信息
rows, cols, _ = img_hsv_salt.shape
# 在图像上随机选择100个像素点,并将其H通道值设置为255,模拟椒盐噪声
for i in range(100):
    x = np.random.randint(0, rows)
    y = np.random.randint(0, cols)    
    # 将选定像素点的H通道值设为255
    img_hsv_salt[x, y][0] = 255
img_hsv_salt = img_hsv.copy()
# 获取图像行数、列数和通道数信息
rows, cols, _ = img_hsv_salt.shape
# 在图像上随机选择100个像素点,并将其H通道值设置为255,模拟椒盐噪声
for i in range(100):
    x = np.random.randint(0, rows)
    y = np.random.randint(0, cols)    
    img_hsv_salt[x, y][0] = 255

6.在YIQ的Y通道加入椒盐噪声

在YIQ格式的图像中,我们选择了Y通道。同样的方式,通过随机选择像素点的方式,在该像素点的Y通道上加入椒盐噪声。

img_yiq_salt = img_yiq.copy()
for i in range(100):
    x = np.random.randint(0,rows)
    y = np.random.randint(0,cols)
    img_yiq_salt[x,y][0] = 255

7.将加入椒盐噪声的H通道、Y通道分别显示

接下来,我们分别显示加入了椒盐噪声的HSV和YIQ格式图像的H通道。使用matplotlib的imshow函数,并将显示效果设置为灰度图。

plt.imshow(img_hsv_salt[:,:,0], cmap='gray')
plt.title('Salt & Pepper noise on H channel of HSV')
plt.show()
plt.imshow(img_yiq_salt[:,:,0], cmap='gray')
plt.title('Salt & Pepper noise on Y channel of YIQ')
plt.show()

计算机视觉--利用HSV和YIQ颜色空间处理图像噪声,计算机视觉,计算机视觉,人工智能,opencv,图像处理,原力计划
计算机视觉--利用HSV和YIQ颜色空间处理图像噪声,计算机视觉,计算机视觉,人工智能,opencv,图像处理,原力计划

8.合成加入椒盐噪声的HSV、YIQ格式图像

我们将加入了椒盐噪声的HSV、YIQ格式的图像分别转换回RGB格式,方便后续显示。

img_hsv_salt = cv2.cvtColor(img_hsv_salt,cv2.COLOR_HSV2RGB)
img_yiq_salt = cv2.cvtColor(img_yiq_salt,cv2.COLOR_YCrCb2RGB)

9.分别将R、G、B通道显示

接下来,我们分别显示原始RGB图像的R、G、B通道。使用matplotlib的imshow函数,并将显示效果设置为灰度图。

fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(12, 4))
axs[0].imshow(img[:,:,0], cmap='gray')
axs[0].set_title('R')
axs[1].imshow(img[:,:,1], cmap='gray')
axs[1].set_title('G')
axs[2].imshow(img[:,:,2], cmap='gray')
axs[2].set_title('B')
plt.show()

计算机视觉--利用HSV和YIQ颜色空间处理图像噪声,计算机视觉,计算机视觉,人工智能,opencv,图像处理,原力计划

10.分别将H、S、V通道显示

接下来,我们分别显示加入椒盐噪声的HSV图像的H、S、V通道。其中,H通道使用hsv色彩空间来显示,而S和V通道使用灰度图来显示。

fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(12, 4))
axs[0].imshow(img_hsv[:,:,0], cmap='hsv')
axs[0].set_title('H')
axs[1].imshow(img_hsv[:,:,1], cmap='gray')
axs[1].set_title('S')
axs[2].imshow(img_hsv[:,:,2], cmap='gray')
axs[2].set_title('V')
plt.show()

计算机视觉--利用HSV和YIQ颜色空间处理图像噪声,计算机视觉,计算机视觉,人工智能,opencv,图像处理,原力计划

11.显示加入椒盐噪声的HSV、YIQ格式图像

接下来,我们使用matplotlib显示加入椒盐噪声的HSV和YIQ格式的图像。

fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(12, 6))
axs[0].imshow(img_hsv_salt)
axs[0].set_title('Salt & Pepper noise on H channel of HSV')
axs[1].imshow(img_yiq_salt)
axs[1].set_title('Salt & Pepper noise on Y channel of YIQ')
plt.show()

计算机视觉--利用HSV和YIQ颜色空间处理图像噪声,计算机视觉,计算机视觉,人工智能,opencv,图像处理,原力计划

12.将合成的加入椒盐噪声的HSV、YIQ格式图像分别转换为RGB格式并显示

最后,我们将加入了椒盐噪声的HSV和YIQ格式的图像转换回RGB格式,并使用matplotlib进行显示。

img_hsv_salt_rgb = cv2.cvtColor(img_hsv_salt,cv2.COLOR_RGB2BGR)
img_yiq_salt_rgb = cv2.cvtColor(img_yiq_salt,cv2.COLOR_RGB2BGR)
plt.imshow(img_hsv_salt_rgb)
plt.title('Salt & Pepper noise on H channel of HSV RGB')
plt.show()
plt.imshow(img_yiq_salt_rgb)
plt.title('Salt & Pepper noise on Y channel of YIQ RGB')
plt.show()

计算机视觉--利用HSV和YIQ颜色空间处理图像噪声,计算机视觉,计算机视觉,人工智能,opencv,图像处理,原力计划
计算机视觉--利用HSV和YIQ颜色空间处理图像噪声,计算机视觉,计算机视觉,人工智能,opencv,图像处理,原力计划

13.总结

在本文中,我们使用RGB转HSV和YIQ的操作,通过加入椒盐噪声并将其转换回RGB格式,对图像进行了噪声处理。我们展示了原始RGB图像以及其R、G、B通道的显示,接着将图像转换为HSV和YIQ格式,并在H通道和Y通道中分别加入了椒盐噪声。然后,我们将加入了噪声的H、S、V通道以及Y通道进行了显示。最后,我们展示了加入椒盐噪声的HSV和YIQ格式图像,并将它们转换回RGB格式进行显示。

通过这样的操作,我们可以进一步了解颜色空间转换在图像处理中的应用,以及如何通过加入噪声来模拟图像中的实际场景。此外,我们还探索了如何通过转换回RGB格式来展示噪声处理后的图像。这些技术在图像去噪、图像增强和其他相关领域中具有重要的应用价值。这些方法对于从图像中去除噪声以及提高图像视觉效果具有重要意义,并且可以在许多实际应用中发挥作用。

本期推荐:
Python从入门到精通(购买通道)
计算机视觉--利用HSV和YIQ颜色空间处理图像噪声,计算机视觉,计算机视觉,人工智能,opencv,图像处理,原力计划

IT今日热榜: http://itoday.top/
计算机视觉--利用HSV和YIQ颜色空间处理图像噪声,计算机视觉,计算机视觉,人工智能,opencv,图像处理,原力计划文章来源地址https://www.toymoban.com/news/detail-608617.html

到了这里,关于计算机视觉--利用HSV和YIQ颜色空间处理图像噪声的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包