Tesseract OCR 引擎:Tesseract是一个开源的OCR引擎,你需要先安装它。可以从Tesseract官方网站(https://github.com/tesseract-ocr/tesseract)下载适用于你的操作系统的安装程序或源代码,并按照官方文档进行安装。
Tesseract OCR 对于低分辨率或模糊的图片可能无法准确识别。尝试使用更高分辨率和清晰度的图片来提高识别结果的准确性。对于 Mac 上的截图,一般都是很清晰的,所以这个缺点影响不大。
在 Mac 上,使用官网推荐的方式安装:
brew install tesseract
The tesseract directory can then be found using brew info tesseract, e.g.文章来源:https://www.toymoban.com/news/detail-608929.html
/usr/local/Cellar/tesseract/5.3.2/bin/tesseract
demo:文章来源地址https://www.toymoban.com/news/detail-608929.html
import pytesseract
from PIL import Image
# 可以写一个函数 crop_picture 将原图裁剪一下,只保留想要识别文本的部分,这样识别更加准确一些。
def crop_picture(picture_path, crop_box: list):
"""
crap picture with crop_box
:param picture_path: picture to be crapped
:param crop_box: crop region, eg: [100, 200, 300, 350]
:return: path of crapped picture
"""
dirname = os.path.dirname(picture_path)
basename = os.path.basename(picture_path)
new_basename = ''.join([basename.split('.')[0], '_new.', basename.split('.')[1]])
picture_origin = Image.open(picture_path)
picture_origin_size = picture_origin.size
if crop_box[2] is None:
crop_box[2] = picture_origin_size[0]
if crop_box[3] is None:
crop_box[3] = picture_origin_size[1]
picture_new = picture_origin.crop(tuple(crop_box))
picture_new_path = os.path.join(dirname, new_basename)
picture_new.save(picture_new_path)
return picture_new_path
def get_text_from_picture(picture_path, crop_box: list):
"""
get text from picture
:param picture_path: picture to be crapped
:param crop_box: crop region, eg: [100, 200, 300, 350]
:return: text
"""
pytesseract.pytesseract.tesseract_cmd = r'/usr/local/Cellar/tesseract/5.3.2/bin/tesseract'
picture_new_path = crop_picture(picture_path, crop_box=crop_box)
image = Image.open(picture_new_path)
text = pytesseract.image_to_string(image, lang='eng')
print(text)
return text
if __name__ == '__main__':
get_text_from_picture('my_picture_path', crop_box=[585, 360, None, 800])
到了这里,关于Mac 上使用 Tesseract OCR 识别图片文本的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!