特征值和特征向量的通俗解释

这篇具有很好参考价值的文章主要介绍了特征值和特征向量的通俗解释。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

我们知道,特征向量的公式是

                ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        

其中A代表矩阵,x代表特征向量,代表特征值。

众所周知,特征值是一个数字,一个数字乘以一个向量,相当于把向量进行了伸缩。举个例子:

,                                                       (3,4)T代表矩阵的转置。向量是列向量。

显然,相较于,方向没有变化,只是大小发生了变化。即向量发生了伸缩。

注意上面的公式,左右两边是由等号连接的。因此,可以理解为一个矩阵乘以一个向量的效果是让该向量进行了一个方向不变的伸缩。

所以特征值和特征向量的通俗解释是:

1、矩阵是一个向量的变换方式。

2、特征向量就是该向量经过某一矩阵变换之后其方向不变的向量。

3、特征值是一个伸缩倍数。文章来源地址https://www.toymoban.com/news/detail-609006.html

到了这里,关于特征值和特征向量的通俗解释的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 线性代数中矩阵的特征值与特征向量

    作者:禅与计算机程序设计艺术 在线性代数中,如果一个$ntimes n$的方阵$A$满足如下两个条件之一: $A$存在实数特征值,即$exists xneq 0:Ax=kx$,其中$kin mathbb{R}$; $lambda_{max}(A)neq 0$($lambda_{max}(A)$表示$A$的最大特征值),且$||x_{lambda_{max}(A)}||=sqrt{frac{lambda_{max}(A)}{lambda_{

    2024年02月08日
    浏览(52)
  • 线性代数(五) | 矩阵对角化 特征值 特征向量

    矩阵实际上是一种变换,是一种旋转伸缩变换(方阵) 不是方阵的话还有可能是一种升维和降维的变换 直观理解可以看系列超赞视频线性代数-哔哩哔哩_Bilibili 比如A= ( 1 2 2 1 ) begin{pmatrix}12\\\\21end{pmatrix} ( 1 2 ​ 2 1 ​ ) x= ( 1 2 ) begin{pmatrix}1\\\\2end{pmatrix} ( 1 2 ​ ) 我们给x左乘A实际

    2024年02月04日
    浏览(64)
  • 从浅到深研究矩阵的特征值、特征向量

    本篇特征值、特征向量笔记来源于MIT线性代数课程。 对于方阵而言,现在要找一些特殊的数字,即特征值,和特殊的向量,即特征向量。 给定矩阵A,矩阵A作用在向量上,得到向量Ax(A的作用,作用在一个向量上,这其实就类似于函数,输入向量x,得到向量Ax) 在这些向量

    2024年02月12日
    浏览(47)
  • 【证明】矩阵不同特征值对应的特征向量线性无关

    定理 1 设 λ 1 , λ 2 , ⋯   , λ m lambda_1,lambda_2,cdots,lambda_m λ 1 ​ , λ 2 ​ , ⋯ , λ m ​ 是方阵 A boldsymbol{A} A 的 m m m 个特征值, p 1 , p 2 , ⋯   , p m boldsymbol{p}_1,boldsymbol{p}_2,cdots,boldsymbol{p}_m p 1 ​ , p 2 ​ , ⋯ , p m ​ 依次是与之对应的特征向量,如果 λ 1 , λ 2 , ⋯   , λ

    2024年02月09日
    浏览(46)
  • 矩阵的谱分解 (详细推导步骤~~~特征值分解特征向量

           所谓矩阵的分解,就是将一个矩阵写成结构比较简单的或性质比较熟悉的另一些矩阵的乘积。矩阵的分解方法有很多种,包括三角分解、QR(正交三角)分解、最大秩分解、奇异值分解和谱分解,所有这些分解在数值代数和最优化问题的解法中都扮演着十分重要的角

    2024年02月05日
    浏览(55)
  • Python中的矩阵对角化与特征值、特征向量

    Python中的矩阵对角化与特征值、特征向量 在数学和物理学中,矩阵对角化是一种重要的矩阵变换方法。Python提供了许多工具和库来实现矩阵对角化操作,并能够计算矩阵的特征值和特征向量。本文将针对Python中的矩阵对角化、特征值和特征向量的相关概念进行详细的介绍。

    2024年02月11日
    浏览(60)
  • 线性代数|证明:矩阵不同特征值对应的特征向量线性无关

    定理 1 设 λ 1 , λ 2 , ⋯   , λ m lambda_1,lambda_2,cdots,lambda_m λ 1 ​ , λ 2 ​ , ⋯ , λ m ​ 是方阵 A boldsymbol{A} A 的 m m m 个特征值, p 1 , p 2 , ⋯   , p m boldsymbol{p}_1,boldsymbol{p}_2,cdots,boldsymbol{p}_m p 1 ​ , p 2 ​ , ⋯ , p m ​ 依次是与之对应的特征向量,如果 λ 1 , λ 2 , ⋯   , λ

    2024年02月07日
    浏览(59)
  • 向量与矩阵 导数和偏导数 特征值与特征向量 概率分布 期望方差 相关系数

    标量(scalar) :一个单独的数。 向量(vector) :⼀组有序排列的数。通过次序中的索引,我们可以确定每个单独的数。 矩阵(matrix) :具有相同特征和纬度的对象的集合。⼀个对象表⽰为矩阵中的⼀⾏,⼀个特征表⽰为矩阵中的⼀列,表现为⼀张⼆维数据表。 张量(ten

    2024年02月03日
    浏览(46)
  • 雅可比旋转(Jacobi法)求对称矩阵的特征值和特征向量

    该方法是求解 对称矩阵 全部特征值和特征向量的一种方法,它基于以下结论: ① 任何实对称矩阵A可以通过正交相似变换成对角型 ,即存在正交矩阵Q,使得 Q T A Q = d i a g ( λ 1 , λ 2 , … , λ n ) Q^TAQ=diag(λ1,λ2,…,λn) Q T A Q = d ia g ( λ 1 , λ 2 , … , λn ) 其中λi(i=1,2,…,n)是A的特征

    2024年01月23日
    浏览(48)
  • 特征值与特征向量: 矩阵的奇异值分解与主成分分析

    随着数据量的增加,数据处理和分析变得越来越复杂。在大数据领域,我们需要一种有效的方法来处理高维数据,以便更好地理解数据之间的关系和模式。这就是奇异值分解(Singular Value Decomposition, SVD)和主成分分析(Principal Component Analysis, PCA)发挥作用的地方。在本文中,我们将

    2024年02月19日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包