解决分布式事务问题,需要一些分布式系统的基础知识作为理论指导。
1. CAP定理
Consistency(一致性): 用户访问分布式系统中的任意节点,得到的数据必须一致 Availability(可用性):
用户访问集群中的任意健康节点,必须能得到响应,而不是超时或拒绝。 Partition(分区):
因为网络故障或其它原因导致分布式系统中的部分节点与其它节点失去连接,形成独立分区。 tolerance(容错):
在集群出现分区时,整个系统也要持续对外提供服务
======结论: CP : 强一致性,弱可用性(牺牲部分机器的可用性,保证数据一致性) AP : 强可用性,弱一致性(牺牲一致性,保证可用性)
1998年,加州大学的计算机科学家 Eric Brewer 提出,分布式系统有三个指标。
- Consistency(一致性)
- Availability(可用性)
- Partition tolerance (分区容错性)
它们的第一个字母分别是 C、A、P。
Eric Brewer 说,这三个指标不可能同时做到。这个结论就叫做 CAP 定理。
1.1 一致性
Consistency(一致性):用户访问分布式系统中的任意节点,得到的数据必须一致。
比如现在包含两个节点,其中的初始数据是一致的:
当我们修改其中一个节点的数据时,两者的数据产生了差异:
要想保住一致性,就必须实现node01 到 node02的数据 同步:
1.2 可用性
Availability (可用性):用户访问集群中的任意健康节点,必须能得到响应,而不是超时或拒绝。
如图,有三个节点的集群,访问任何一个都可以及时得到响应:
当有部分节点因为网络故障或其它原因无法访问时,代表节点不可用:
1.3 分区容错
Partition(分区):因为网络故障或其它原因导致分布式系统中的部分节点与其它节点失去连接,形成独立分区。
Tolerance(容错):在集群出现分区时,整个系统也要持续对外提供服务
1.4 矛盾
在分布式系统中,系统间的网络不能100%保证健康,一定会有故障的时候,而服务有必须对外保证服务。因此Partition Tolerance不可避免。
当节点接收到新的数据变更时,就会出现问题了:
如果此时要保证一致性,就必须等待网络恢复,完成数据同步后,整个集群才对外提供服务,服务处于阻塞状态,不可用。
如果此时要保证可用性,就不能等待网络恢复,那node01、node02与node03之间就会出现数据不一致。
也就是说,在P一定会出现的情况下,A和C之间只能实现一个。
2. BASE理论
BASE理论是对CAP的一种解决思路,包含三个思想:
- Basically Available (基本可用):分布式系统在出现故障时,允许损失部分可用性,即保证核心可用。
- Soft State(软状态) 在一定时间内,允许出现中间状态,比如临时的不一致状态。
- Eventually Consistent(最终一致性):虽然无法保证强一致性,但是在软状态结束后,最终达到数据一致。
3. 解决分布式事务的思路
分布式事务最大的问题是各个子事务的一致性问题,因此可以借鉴CAP定理和BASE理论,有两种解决思路:
-
AP模式:各子事务分别执行和提交,允许出现结果不一致,然后采用弥补措施恢复数据即可,实现最终一致。
-
CP模式:各个子事务执行后互相等待,同时提交,同时回滚,达成强一致。但事务等待过程中,处于弱可用状态。
但不管是哪一种模式,都需要在子系统事务之间互相通讯,协调事务状态,也就是需要一个事务协调者(TC):
这里的子系统事务,称为分支事务;有关联的各个分支事务在一起称为全局事务。
4. 扩展
ES 是 CP 为主,ES集群有节点发生故障 会剔除故障节点,数据会重新分配到其他节点,这个过程集群是不可用的保证数据的一致性。因此是低可用性、高一致性。
Eureka 是 AP。
Nacos 是有 CP 和 AP 都支持(默认AP)。文章来源:https://www.toymoban.com/news/detail-609021.html
文章来源地址https://www.toymoban.com/news/detail-609021.html
到了这里,关于分布式理论:CAP理论 BASE理论的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!