数据结构和算法——快速排序(算法概述、选主元、子集划分、小规模数据的处理、算法实现)

这篇具有很好参考价值的文章主要介绍了数据结构和算法——快速排序(算法概述、选主元、子集划分、小规模数据的处理、算法实现)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

算法概述

图示

伪代码

选主元

子集划分

小规模数据的处理

算法实现


算法概述

图示

快速排序和归并排序有一些相似,都是用到了分而治之的思想:

数据结构和算法——快速排序(算法概述、选主元、子集划分、小规模数据的处理、算法实现),数据结构,学习,笔记,算法,排序算法

伪代码

数据结构和算法——快速排序(算法概述、选主元、子集划分、小规模数据的处理、算法实现),数据结构,学习,笔记,算法,排序算法 

通过初步的认识,我们能够知道快速排序算法最好的情况应该是:

每次都正好中分,即每次选主元都为元素的中位数的位置。

最好情况的时间复杂度为

选主元

假设我们把第一个元素设为主元,看以下的一种特殊情况:

数据结构和算法——快速排序(算法概述、选主元、子集划分、小规模数据的处理、算法实现),数据结构,学习,笔记,算法,排序算法

 选了第一个元素为主元之后,扫描所有元素所用时间复杂度为O(N),然后还有N-1个元素要进行递归,时间复杂度记为T(N-1),所以最终它的时间复杂度为:

数据结构和算法——快速排序(算法概述、选主元、子集划分、小规模数据的处理、算法实现),数据结构,学习,笔记,算法,排序算法

既然这种方法不行,那如果我们随机取pivot呢?

很显然,rand()函数的时间效率是很低的,当然也不考虑。

所以我们就想,

取头、中、尾的中位数,例如取三个数的中位数:8、12、3的中位数就是8;或者五个数选取中位数等等。

下面就是三个数中选取中位数的算法:

ElementType Median3( ElementType A[], int Left, int Right )
{ 
    int Center = (Left+Right) / 2;
    if ( A[Left] > A[Center] )
        Swap( &A[Left], &A[Center] );
    if ( A[Left] > A[Right] )
        Swap( &A[Left], &A[Right] );
    if ( A[Center] > A[Right] )
        Swap( &A[Center], &A[Right] );
    /* 此时A[Left] <= A[Center] <= A[Right] */
    Swap( &A[Center], &A[Right-1] ); /* 将基准Pivot藏到右边*/
    /* 只需要考虑A[Left+1] … A[Right-2] */
    return  A[Right-1];  /* 返回基准Pivot */
}

数据结构和算法——快速排序(算法概述、选主元、子集划分、小规模数据的处理、算法实现),数据结构,学习,笔记,算法,排序算法

 选好基准之后,我们就进入子集的划分。

子集划分

数据结构和算法——快速排序(算法概述、选主元、子集划分、小规模数据的处理、算法实现),数据结构,学习,笔记,算法,排序算法

注意:如果有元素正好等于pivot时,则停下来进行交换。

小规模数据的处理

快速排序有一个比较明显的问题,那就是用递归,而递归需要频繁地调用栈;在小规模数据的处理上不占优势。

也就是说,对小规模的数据(例如N不到100)可能还不如插入排序快。

解决方案

  • 当递归的数据规模充分小时,则停止递归,直接调用简单排序(例如插入排序)
  • 在程序中定义一个Cutoff的阈值

算法实现

ElementType Median3( ElementType A[], int Left, int Right )
{ 
    int Center = (Left+Right) / 2;
    if ( A[Left] > A[Center] )
        Swap( &A[Left], &A[Center] );
    if ( A[Left] > A[Right] )
        Swap( &A[Left], &A[Right] );
    if ( A[Center] > A[Right] )
        Swap( &A[Center], &A[Right] );
    /* 此时A[Left] <= A[Center] <= A[Right] */
    Swap( &A[Center], &A[Right-1] ); /* 将基准Pivot藏到右边*/
    /* 只需要考虑A[Left+1] … A[Right-2] */
    return  A[Right-1];  /* 返回基准Pivot */
}

void Qsort( ElementType A[], int Left, int Right )
{ /* 核心递归函数 */ 
     int Pivot, Cutoff, Low, High;
      
     if ( Cutoff <= Right-Left ) { /* 如果序列元素充分多,进入快排 */
          Pivot = Median3( A, Left, Right ); /* 选基准 */ 
          Low = Left; High = Right-1;
          while (1) { /*将序列中比基准小的移到基准左边,大的移到右边*/
               while ( A[++Low] < Pivot ) ;
               while ( A[--High] > Pivot ) ;
               if ( Low < High ) Swap( &A[Low], &A[High] );
               else break;
          }
          Swap( &A[Low], &A[Right-1] );   /* 将基准换到正确的位置 */ 
          Qsort( A, Left, Low-1 );    /* 递归解决左边 */ 
          Qsort( A, Low+1, Right );   /* 递归解决右边 */  
     }
     else InsertionSort( A+Left, Right-Left+1 ); /* 元素太少,用简单排序 */ 
}

void QuickSort( ElementType A[], int N )
{ /* 统一接口 */
     Qsort( A, 0, N-1 );
}

end


学习自:MOOC数据结构——陈越、何钦铭文章来源地址https://www.toymoban.com/news/detail-609483.html

到了这里,关于数据结构和算法——快速排序(算法概述、选主元、子集划分、小规模数据的处理、算法实现)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【数据结构与算法】:选择排序与快速排序

    🔥 个人主页 : Quitecoder 🔥 专栏 :数据结构与算法 我的博客即将同步至腾讯云开发者社区,邀请大家一同入驻:腾讯云 欢迎来到排序的第二个部分:选择排序与快速排序! 选择排序是一种简单直观的比较排序算法。该算法的基本思想是在每一轮中选出当前未排序部分的最

    2024年03月17日
    浏览(52)
  • 数据结构与算法之快速排序

    快速排序 (Quick Sort),又称划分交换排序(partition-exchange sort),通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数

    2024年02月10日
    浏览(43)
  • 【数据结构】排序算法(二)—>冒泡排序、快速排序、归并排序、计数排序

    👀 樊梓慕: 个人主页  🎥 个人专栏: 《C语言》《数据结构》《蓝桥杯试题》《LeetCode刷题笔记》《实训项目》 🌝 每一个不曾起舞的日子,都是对生命的辜负 目录 前言 1.冒泡排序 2.快速排序 2.1Hoare版 2.2占坑版 2.3前后指针版 2.4三数取中对快速排序的优化 2.5非递归版 3.归

    2024年02月08日
    浏览(50)
  • 【数据结构与算法】:非递归实现快速排序、归并排序

    🔥 个人主页 : Quitecoder 🔥 专栏 :数据结构与算法 上篇文章我们详细讲解了递归版本的快速排序,本篇我们来探究非递归实现快速排序和归并排序 快速排序的非递归实现主要依赖于栈(stack)来模拟递归过程中的函数调用栈。递归版本的快速排序通过递归调用自身来处理子

    2024年03月24日
    浏览(53)
  • 【数据结构与算法】如何对快速排序进行细节优化以及实现非递归版本的快速排序?

    君兮_的个人主页 即使走的再远,也勿忘启程时的初心 C/C++ 游戏开发 Hello,米娜桑们,这里是君兮_,国庆长假结束了,无论是工作还是学习都该回到正轨上来了,从今天开始恢复正常的更新频率,今天为大家带来的内容是快速排序的两大优化和非递归实现 好了废话不多说,开

    2024年02月08日
    浏览(44)
  • 【数据结构与算法】快速排序的三种实现方法

      目录 一.基本思想 二.Hoare法 动态演示 三.挖坑法 动态演示 四.前后指针法 动态演示 五.快速排序优化 随机下标交换法 三路取中法 六.快速排序的特性 任取待排序元素序列中的某元素作为 基准值 ,按照该排序码将待排序集合 分割成两子序列 , 左子序列中所有元素均小于基

    2023年04月09日
    浏览(63)
  • 【数据结构与算法】快速排序的非递归实现方法

      目录 一.前言 二.非递归实现 如果数据量过大的话,不断递归就会出现 栈溢出 的现象,这个时候你的代码是没问题的,但就是跑不起来,这个时候就要 把递归改成非递归 。 一般有两种改法: 1.直接改,利用循环等; 2.借助栈的辅助。 而快速排序的非递归实现方法就需要

    2023年04月17日
    浏览(53)
  • 【数据结构】详解七大排序算法(直接插入排序、希尔排序、直接选择排序、堆排序、冒泡排序、快速排序)

    1、基本思想    把待排序的数按其关键码值的大小逐个插入到一个已经排好序的有序序列中,直到所以的记录插入完为止,得到一个新的有序序列。    实际中我们玩扑克牌时,就用到了插入排序的思想 基本步骤:    当插入第i个元素时,前面的arr[0]、arr[2]…arr

    2024年02月04日
    浏览(74)
  • 【数据结构】- 排序(详细介绍几种排序算法!!!*直接插入排序,*希尔排序,*选择排序,*堆排序,*冒泡排序,*快速排序,*归并排序)

    排序无处不在,所谓排序,就是使一串记录,按照其中的某个或某些的大小,递增或递减的排列起来的操作。 内部排序 :数据元素全部放在内存中的排序。 外部排序 :数据元素太多不能同时放在内存中,根据排序过程的要求不能在内外存之间移动数据的排序。 今天

    2024年01月20日
    浏览(59)
  • 【Java数据结构与算法】Day2-高级排序(希尔、归并、快速、计数)

    ✅作者简介:热爱Java后端开发的一名学习者,大家可以跟我一起讨论各种问题喔。 🍎个人主页:Hhzzy99 🍊个人信条:坚持就是胜利! 💞当前专栏:【Java数据结构与算法】 🥭本文内容:Java数据结构与算法中的比较高级的排序,希尔排序、归并排序、快速排序、计数排序

    2024年02月02日
    浏览(62)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包