概论_第2章_一维均匀分布的概率公式

这篇具有很好参考价值的文章主要介绍了概论_第2章_一维均匀分布的概率公式。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

均匀分布的概率计算有一个概率公式:

设X~U(a, b), a≤c<d≤b, 即 [c, d] ⊂ [a, b], 则

P{c≤X≤d} = 均匀分布求概率,概论第2章随机变量及其概率分布,概率论,Powered by 金山文档

使用这个公式计算概率很方便, 例如, X~U(0, 3), 则

P{1≤X≤2} = 均匀分布求概率,概论第2章随机变量及其概率分布,概率论,Powered by 金山文档 = 均匀分布求概率,概论第2章随机变量及其概率分布,概率论,Powered by 金山文档文章来源地址https://www.toymoban.com/news/detail-609687.html

到了这里,关于概论_第2章_一维均匀分布的概率公式的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 概论_第3章_二维随机变量__均匀分布

    一 定义 设D为平面上的有界区域, 其面积为S, 且S0, 如果二维随机变量(X, Y)的概率密度为 则称(X, Y) 服从区域D上的均匀分布, 记作 (X , Y) ~ . 看其两个特殊情形: D为矩形区域 , , 此时 D为圆形区域, (X, Y)在以原点为圆心、R为半径的圆域上服从均匀分布, 则(X, Y)的概率密度为

    2024年02月11日
    浏览(36)
  • 概率统计笔记:二维随机变量及其联合概率分布

    定义3 设 ( X , Y ) (X,Y) ( X , Y ) 为二维随机变量,对任意的 ( x , y ) ∈ R 2 (x,y)∈R^2 ( x , y ) ∈ R 2 ,称 F ( x , y ) = P ( X ≤ x , Y ≤ y ) F(x,y)=P(X≤x,Y≤y) F ( x , y ) = P ( X ≤ x , Y ≤ y ) 为随机变量 ( X , Y ) (X,Y) ( X , Y ) 的

    2023年04月08日
    浏览(42)
  • 概论_第3章_重点_两个随机变量的函数的分布__卷积公式

    前面, 我详细介绍了 一个随机变量函数的概率分布 ,本文开始介绍 两个随机变量的函数 。 注意, 不能写成 两个随机变量函数, 那就会误认为 两个函数 , 本文主要介绍两个连续型随机变量的函数, 至于离散型,由读者自行了解。 一 两个连续型随机变量 设X与Y为两个连

    2024年02月05日
    浏览(47)
  • 概率第三章 二维随机变量及其分布

    目录 一、二维随机变量及其分布 1、二维随机变量 2、二维离散型随机变量(X,Y) 3、二维连续型随机变量(X,Y) 二、二维随机变量的独立性 三、二维均匀分布和二维正态分布 二维均匀分布 二维正态分布 四、二个随机变量函数Z=g(X,Y)的分布 X、Y均为离散型随机变量: X、Y均为连续

    2024年02月09日
    浏览(67)
  • 概率论与数理统计————3.随机变量及其分布

    设E是一个随机试验,S为样本空间,样本空间的任意样本点e可以通过特定的对应法则X,使得每个样本点都有与之对应的数对应,则称 X=X(e)为随机变量 分布函数: 设X为随机变量,x是任意实数,则事件{Xx}为随机变量X的分布函数,记为F(x) 即: F(x)=P(Xx) (1)几何意

    2024年01月18日
    浏览(39)
  • 【考研数学】概率论与数理统计 —— 第三章 | 二维随机变量及其分布(3,二维随机变量函数的分布)

    设 ( X , Y ) (X,Y) ( X , Y ) 为二维随机变量,以 X , Y X,Y X , Y 为变量所构成的二元函数 Z = φ ( X , Y ) Z=varphi(X,Y) Z = φ ( X , Y ) ,称为随机变量 ( X , Y ) (X,Y) ( X , Y ) 的函数,其分布一般有如下几种情形: ( X , Y ) (X,Y) ( X , Y ) 为二维离散型随机变量 设 ( X , Y ) (X,Y) ( X , Y ) 联合分布律为

    2024年02月07日
    浏览(39)
  • 《概率论与数理统计》学习笔记3-二维随机变量及其分布

    目录 二维随机变量及其分布函数 二维离散型随机变量及其概率分布 连续型随机变量及其概率密度 条件分布 二维随机变量的函数分布         二维随机变量的定义:                 X和Y是定义在随机试验E的 样本空间Ω 上的 两个随机变量 ,他们 构成的向量 (𝑋

    2024年02月07日
    浏览(49)
  • 概率论与数理统计中常见的随机变量分布律、数学期望、方差及其介绍

    设随机变量X的所有可能取值为0与1两个值,其分布律为 若分布律如上所示,则称X服从以P为参数的(0-1)分布或两点分布。记作X~ B(1,p) 0-1分布的分布律利用表格法表示为: X 0 1 P 1-P P 0-1分布的数学期望 E(X) = 0 * (1 - p) + 1 * p = p 二项分布的分布律如下所示: 其中P是事件在一次试验

    2024年02月05日
    浏览(38)
  • 【考研数学】概率论与数理统计 —— 第三章 | 二维随机变量及其分布(1,二维连续型和离散型随机变量基本概念与性质)

    隔了好长时间没看概率论了,上一篇文章还是 8.29 ,快一个月了。主要是想着高数做到多元微分和二重积分题目,再来看这个概率论二维的来,更好理解。不过没想到内容太多了,到现在也只到二元微分的进度。 定义 1 —— 二维随机变量。设 X , Y X,Y X , Y 为定义于同一样本空

    2024年02月07日
    浏览(48)
  • 概率论--随机事件与概率--贝叶斯公式--随机变量

    目录 随机事件与概率 概念 为什么要学习概率论 随机事件与随机事件概率 随机事件 随机事件概率 贝叶斯公式  概念 条件概率 概率乘法公式 贝叶斯公式  举个栗子 随机变量   随机变量的定义 随机变量的分类 离散型随机变量 连续型随机变量 概念 随机事件是指在一次试验

    2024年02月11日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包