【动态规划刷题 1 】 第N个泰波那契数&& 三步问题

这篇具有很好参考价值的文章主要介绍了【动态规划刷题 1 】 第N个泰波那契数&& 三步问题。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

第N个泰波那契数

链接: 第N个泰波那契数

1137 . 第 N 个泰波那契数

泰波那契序列 Tn 定义如下:
T0 = 0, T1 = 1, T2 = 1, 且在 n >= 0 的条件下 Tn+3 = Tn + Tn+1 + Tn+2
给你整数 n,请返回第 n 个泰波那契数 Tn 的值。

示例 1:
输入:n = 4
输出:4
解释:
T_3 = 0 + 1 + 1 = 2
T_4 = 1 + 1 + 2 = 4

示例 2:
输入:n = 25
输出:1389537

1.状态表示

dp[i] 表示的是第 i 个泰波那契数的值。

2.状态转移方程

动态规划题,我们需要学会依靠经验和题目解析去猜测他们的状态转移方程。
这一题题目已经告诉我们了。

dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3]

3. 初始化

从我们的递推公式可以看出, dp[i] 在 i = 0 以及 i = 1 的时候是没有办法进⾏推导的,因为dp[i-2] 或 dp[i-1] 不是⼀个有效的数据。

因此我们需要在填表之前,将0, 1, 2 位置的值初始化。题⽬中已经告诉我们
dp[0] = 0, dp[1] = dp[2] = 1 。

4. 填表顺序
按照数组下标的顺序,从左往右。

5. 返回值
应该返回 dp[n] 的值。

代码:

在写代码时按照此顺序:

  1. 创建dp
  2. 初始化
  3. 填表
  4. 返回值
   int tribonacci(int n) {
     
  
        vector<int> dp(n+1);
          if(n==0) return 0;
        if(n==1||n==2) return 1;

        dp[0]=0;
        dp[1]=dp[2]=1;
      
        for(int i=3;i<=n;i++)
        {
            dp[i]=dp[i-1]+dp[i-2]+dp[i-3];
        }
        return dp[n];
    }

【动态规划刷题 1 】 第N个泰波那契数&& 三步问题,动态规划,算法

三步问题

链接: 三步问题

面试题 08.01. 三步问题

三步问题。有个小孩正在上楼梯,楼梯有n阶台阶,小孩一次可以上1阶、2阶或3阶。实现一种方法,计算小孩有多少种上楼梯的方式。结果可能很大,你需要对结果模1000000007。

示例1:
输入:n = 3
输出:4
说明: 有四种走法

示例2:
输入:n = 5
输出:13

1.状态表示

dp[i] 表示的是以 i 阶楼梯为结尾,小孩跳动到此处的方式数。

2.状态转移方程

以i位置状态的最近的⼀步,来分情况讨论:
如果 dp[i] 表⽰⼩孩上第 i 阶楼梯的所有⽅式,那么它应该等于所有上⼀步的⽅式之和:

  1. 从 i-1 处跳⼀级台阶, dp[i] += dp[i - 1] ;
  2. 从 i-2 处跳两级台阶, dp[i] += dp[i - 2] ;
  3. 从 i-3 处跳三级台阶, dp[i] += dp[i - 3] ;
dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3]

3. 初始化

从我们的递推公式可以看出, dp[i] 在 i = 0 以及 i = 1 的时候是没有办法进⾏推导的,因为dp[i-2] 或 dp[i-1] 不是⼀个有效的数据。

因此我们需要在填表之前,将0, 1, 2 位置的值初始化。我们可知
dp[1] = 1, dp[2] = 2,dp[3]=4;

4. 填表顺序
按照数组下标的顺序,从左往右。

5. 返回值
应该返回 dp[n] 的值。

代码

此题会存在数据溢出的问题,需要取模处理:

   int waysToStep(int n) {
         //创建dp
        //初始化
        //填表
        //返回值
         if(n<=2) return n;
        vector<int> dp(n+1);
        dp[1]=1;
        dp[2]=2;
        dp[3]=4;

        for(int i=4;i<n+1;i++)
        {
        	//取模
            dp[i]=((dp[i-1]+dp[i-2])%1000000007+dp[i-3])%1000000007;
        }
        return dp[n];
    }

【动态规划刷题 1 】 第N个泰波那契数&& 三步问题,动态规划,算法文章来源地址https://www.toymoban.com/news/detail-609714.html

到了这里,关于【动态规划刷题 1 】 第N个泰波那契数&& 三步问题的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • LeetCode、1137. 第 N 个泰波那契数【简单,动态规划】

    博主介绍:✌目前全网粉丝2W+,csdn博客专家、Java领域优质创作者,博客之星、阿里云平台优质作者、专注于Java后端技术领域。 涵盖技术内容:Java后端、算法、分布式微服务、中间件、前端、运维、ROS等。 博主所有博客文件目录索引:博客目录索引(持续更新) 视频平台:

    2024年02月22日
    浏览(52)
  • 【动态规划专栏】专题一:斐波那契数列模型--------1.第N个泰波那契数

    本专栏内容为:算法学习专栏,分为优选算法专栏,贪心算法专栏,动态规划专栏以及递归,搜索与回溯算法专栏四部分。 通过本专栏的深入学习,你可以了解并掌握算法。 💓博主csdn个人主页:小小unicorn ⏩专栏分类:动态规划专栏 🚚代码仓库:小小unicorn的代码仓库🚚

    2024年02月21日
    浏览(43)
  • Java动态规划LeetCode1137. 第 N 个泰波那契数

             方法1:通过动态规划解题,这道题也是动态规划的一道很好的入门题,因为比较简单和容易理解。 代码如下:         动态规划的解题步骤分为5步                 1.状态表示                 2.状态转移方程                 3.初始化                 4.填表

    2024年02月13日
    浏览(48)
  • 【手撕算法|动态规划系列No.1】leetcode1137. 第 N 个泰波那契数

    个人主页:平行线也会相交 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 平行线也会相交 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 🍔本专栏旨在提高自己算法能力的同时,记录一下自己的学习过程,希望对大家有所帮助 🍓希望我们一起努力、成长,共同进步。

    2024年02月11日
    浏览(56)
  • 【动态规划】是泰波那契数,不是斐波那契数

    Problem: 1137. 第 N 个泰波那契数 首先我们来解读一下本题的意思🔍 相信读者在看到【泰波那契数】的时候,不禁会联想到【斐波那契数】,它们呢是一对孪生兄弟,这个 泰波那契数 相当于是 斐波那契数 的加强版 我们首先可以来看到这个递推公式 Tn+3 = Tn + Tn+1 + Tn+2 ,读者可

    2024年02月08日
    浏览(48)
  • 算法刷题Day 38 动态规划理论基础+斐波那契数+爬楼梯

    动态规划的解题步骤: 确定 dp 数组(dp table)以及下标的含义 确定递推公式 dp 数组如何初始化 确定遍历顺序 举例推导 dp 数组 很基础

    2024年02月15日
    浏览(63)
  • LeetCode刷题笔记【29】:动态规划专题-1(斐波那契数、爬楼梯、使用最小花费爬楼梯)

    动态规划(DP,Dynamic Programming)。 其解题思路对比 贪心算法的“直接选局部最优然后推导出全局最优” ;倾向于“ 由之前的结果推导得到后续的结果 ”。 很多时候二者具有相似性,不必死扣概念。 动态规划题目的核心是dp数组的概念和构建(递推公式); 所以具体的解题步骤

    2024年02月09日
    浏览(40)
  • 动态规划-斐波那契数

    斐波那契数是一个很好的熟悉和理解动态规划的例子,通过斐波那契数可以更好的理解动态规划的精髓,动态规划是后面的计算是如何借助于前面的计算结果来加快计算速度的。 斐波那契数和斐波那契数列其实可以看成是一道题,只不过两题的限制性条件稍微有差别 斐波那

    2024年02月14日
    浏览(36)
  • 【动态规划】:泰波那契模型_解码方法

    朋友们、伙计们,我们又见面了,本专栏是关于各种算法的解析,如果看完之后对你有一定的启发,那么请留下你的三连,祝大家心想事成! C 语 言 专 栏:C语言:从入门到精通 数据结构专栏:数据结构 个  人  主  页 :stackY、 C + + 专 栏   :C++ Linux 专 栏  :Linux 目录

    2024年02月19日
    浏览(60)
  • 动态规划专训1——泰波那契数列模型

    动态规划的思想:将一个问题分隔为若干个子问题,完成子问题得到结构再得到最终的答案 动态规划往往解题步骤固定,分为以下几步 1.找出状态表示 2.完成状态转移方程 3.初始化 4.填表顺序 5.返回值 后面三步偏重细节,二解题的核心就在于前两步,所以要想练好动态规划

    2024年04月29日
    浏览(37)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包