机器学习 —— Sklearn包中StandardScaler()、transform()、fit()的详细介绍

这篇具有很好参考价值的文章主要介绍了机器学习 —— Sklearn包中StandardScaler()、transform()、fit()的详细介绍。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

  • sklearn(scikit-learn)是Scipy的扩展,建立在NumPy和matplotlib库的基础上。自2007年发布以来,sklearn已经成为Python重要的机器学习库。
  • sklearn支持包括分类、回归、降维和聚类四大机器学习算法。还包含了特征提取、数据处理和模型评估三大模块。

一、 Sklearn包中StandardScaler()

        1. from sklearn.preprocessing import StandardScaler  #导入数据处理模块中的标准化函数

        2. SS = StandardScaler()         #生成实体类模块

        3. scaler=SS.fit(X_train)        #本质上就是求各列均值和方差

        4. X_train=scaler.transform(X_train)     #对数据各列进行标准化

        5.#利用训练集中各列的均值和方差对测试集每一列进行标准化处理。
        test1=scaler.transform(X_test1)
        test2=scaler.transform(X_test2)

 二、方法二(数据标准化):

mean=train_data.mean(axis=0)
train_data-=mean
std=train_data.std(axis=0)
train_data/=std
test_data-=mean
test_data/=std

注意,用于测试数据标准化的均值和标准差都是在训练数据上计算得到的。在工作流程中,你不能使用在测试数据上计算得到任何结果,即使像数据标准化这么简单的事也不可以。

 文章来源地址https://www.toymoban.com/news/detail-609931.html

到了这里,关于机器学习 —— Sklearn包中StandardScaler()、transform()、fit()的详细介绍的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数据预处理——fit()函数,transform()函数,fit_transform()函数

    sklearn 中封装的各种算法 调用之前都要 fit。 fit 相对于整个代码而言,为后续API服务, 用于从一个训练集中学习模型参数,包括归一化时要用到的均值,标准偏差 fit 之后,可以调用各种API方法, transform 是其中之一。 fit_transform 与 transform 运行结果一致,但是 fit 与 transfor

    2024年02月05日
    浏览(44)
  • sklearn机器学习库(二)sklearn中的随机森林

    集成算法会考虑多个评估器的建模结果,汇总之后得到一个综合的结果, 以此来获取比单个模型更好的回归或分类表现 。 多个模型集成成为的模型叫做集成评估器(ensemble estimator),组成集成评估器的每个模型都叫做基评估器(base estimator)。通常来说,有三类集成算法:

    2024年02月12日
    浏览(45)
  • sklearn机器学习库(一)sklearn中的决策树

    sklearn中决策树的类都在”tree“这个模块之下。 tree.DecisionTreeClassifier 分类树 tree.DecisionTreeRegressor 回归树 tree.export_graphviz 将生成的决策树导出为DOT格式,画图专用 tree.export_text 以文字形式输出树 tree.ExtraTreeClassifier 高随机版本的分类树 tree.ExtraTreeRegressor 高随机版本的回归树

    2024年02月13日
    浏览(48)
  • 机器学习 | sklearn库

    目录 一、样本及样本的划分 1.1 样本划分 1.2 划分样本的方法 二、导入或创建数据集 2.1 导入sklearn自带的样本数据集 2.2 利用sklearn生成随机的数据集 2.3 读入自己创建的数据集 三、数据预处理 3.1 数据标准化 3.2 sklearn中的数据标准化函数 3.3 正则化函数Normalizer() 四、数据的降

    2024年02月08日
    浏览(42)
  • 机器学习--sklearn(决策树)

    决策树(Decision Tree)是一种非参数的有监督学习方法,它能够从一系列有特征和标签的数据中总结出决策规则,并用树状图的结构来呈现这些规则,以解决分类和回归问题。 节点 根节点:没有进边,有出边。包含最初的,针对特征的提问。 中间节点:既有进边也有出边,进

    2023年04月18日
    浏览(33)
  • sklearn机器学习思维导图

    2024年01月24日
    浏览(44)
  • 【机器学习基础 3】 sklearn库

    目录 一、sklearn库简介 二、sklearn库安装 三、关于机器学习 四、sklearn库在机器学习中的应用 1、数据预处理 2、特征提取 3、模型选择与评估 五、常用的sklearn函数 1、数据集划分 2、特征选择 3、特征缩放 4、模型训练 5、模型预测         Scikit-learn(简称sklearn)是一个用于

    2024年02月07日
    浏览(141)
  • 机器学习框架sklearn之随机森林

    集成学习通过建立几个模型组合来解决单一预测问题。它的工作原理是生成多个分类器/模型,各自独立的学习和作出预测。这些预测最后结合成组合预测,因此优于任何一个单分类的做出预测。 在机器学习中,随机森林是一个包含多个决策树的分类器,并且其输出的类别是

    2023年04月22日
    浏览(42)
  • 头歌机器学习---sklearn中的kNN算法

    第1关 使用sklearn中的kNN算法进行分类 第2关 使用sklearn中的kNN算法进行回归

    2024年02月06日
    浏览(46)
  • 【机器学习sklearn】第二节:线性回归和线性分类

    作者 🕵️‍♂️:让机器理解语言か   专栏 🎇:机器学习sklearn 描述 🎨:本专栏主要分享博主学习机器学习的笔记和一些心得体会。 寄语 💓:🐾没有白走的路,每一步都算数!🐾          监督学习(英语:Supervised learning)是机器学习中最为常见、应用最为广泛的

    2023年04月26日
    浏览(61)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包