具身智能controller---RT-1(Robotics Transformer)(中---实验介绍)

这篇具有很好参考价值的文章主要介绍了具身智能controller---RT-1(Robotics Transformer)(中---实验介绍)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

6 实验

实验目的是验证以下几个问题:

  1. RT-1可以学习大规模指令数据,并且可以在新任务、对象和环境上实现zero-shot的泛化能力?
  2. 训练好的模型可以进一步混合多种其他数据(比如仿真数据和来自其他机器人的数据)吗?
  3. 多种方法如何对long-horizon的机器人场景实现泛化?
  4. 泛化度量如何随着数据数量和数据多样性变化?
  5. 在设计模型方面重要和实践的决策应该是什么?他们又将如何影响性能和泛化性?

6.1 实验设置

具身智能controller---RT-1(Robotics Transformer)(中---实验介绍),人工智能,具身智能,强化学习
机器人训练数据的采集是在一个环境下的,示教共13个机器人采集,然后会放在另外两个不同的环境中进行验证。
Seen task performance:即在训练过的任务上来评测,但这类数据也存在一定的变化(如机器人位置,物体位置不同等),一共测试了超过200个任务: 36物体抓取任务, 35敲击物体的任务, 35摆放物体的任务,48个移动物体的操作,18个开关不同抽屉的任务和36个从抽屉中取出或者放置物体的任务;
Unseen tasks generalization:在21个未见的指令任务上进行了测试,这里的未见是指组合任务未见,但拆分的动作和目标对象是见过的;
Robustness:进行了30个任务对错误诱导的鲁棒性验证实验和22个背景鲁棒性验证实验,如下图所示:
具身智能controller---RT-1(Robotics Transformer)(中---实验介绍),人工智能,具身智能,强化学习Long-horizon scenarios: 测试了机器人需要执行一些列技能的场景,在两个厨房场景中测试了15个这样的任务,每个任务需要约10个步骤,这些步骤由Saycan系统根据高层指令自动产生,然后由RT-1执行。

数据
本工作的目标是建立一个高性能机器人控制系统,,对新任务具有一定的通用性,并对背景和干扰选项具有鲁棒性,因此需要采集大量的机器人数据集,包括多任务、对象和环境。原始数据集包含约130k机器人示教,在13个机器人上耗时17个月采集;当前的技能包括:抓取,放置,开关抽屉,从抽屉取放东西, 直立地放置细长东西,将他们锁住,抽出餐巾纸和打开瓶罐,同时技能的扩充是很容易的,随着需求扩增数据即可。
具身智能controller---RT-1(Robotics Transformer)(中---实验介绍),人工智能,具身智能,强化学习

6.2 RT-1是否可以学习大规模指令数据,并且可以在新任务、对象和环境上实现zero-shot的泛化能力?

为回答这个问题,首先和先前的几个工作(Gato, BC-Z, BC-Z XL)进行对比比较,实验结果表明本方法具有更好的性能和泛化性;
为了进一步验证泛化能力,我们在厨房环境中进行实验,首先根据真实厨房环境与训练环境的差异,将其划分成L1-L3三个等级,L1表示对新的案台上面布局和不同光照条件的通用性,L2表示额外有未见过的诱导物体,L3表示额外有较大的新未见任务设置,未见物体或者未见位置,然后对比不同方法在这三种场景下的成功率。
具身智能controller---RT-1(Robotics Transformer)(中---实验介绍),人工智能,具身智能,强化学习具身智能controller---RT-1(Robotics Transformer)(中---实验介绍),人工智能,具身智能,强化学习

6.3 训练好的模型可以进一步混合多种其他数据(比如仿真数据和来自其他机器人的数据)吗?

设计了两大类实验:(1) RT-1同时在真实数据和仿真数据上进行训练和测试 (2) RT-1在大规模不同任务上机芯训练,这些数据来自不同机器人,实验结果如下:
具身智能controller---RT-1(Robotics Transformer)(中---实验介绍),人工智能,具身智能,强化学习具身智能controller---RT-1(Robotics Transformer)(中---实验介绍),人工智能,具身智能,强化学习

6.4 多种方法如何对long-horizon的机器人场景实现泛化?

在Saycan的框架下验证RT-1在long-horizon任务上的泛化能力。另外因为移动操作任务同时需要导航和操作,因此策略对底盘位置的鲁棒性也很重要(底盘可能无法到达期望位置,这时机械臂需要一定的鲁棒性)。
具身智能controller---RT-1(Robotics Transformer)(中---实验介绍),人工智能,具身智能,强化学习

6.5 泛化度量如何随着数据数量和数据多样性变化?

此部分对数据集的大小和多样性进行消融实验,因为数据在传统数据受限的机器人学习中扮演着重要的作用。同时由于数据采集是很昂贵的,了解什么样的数据有助于模型实现特定性能和泛化性也是很重要的。
具身智能controller---RT-1(Robotics Transformer)(中---实验介绍),人工智能,具身智能,强化学习
具身智能controller---RT-1(Robotics Transformer)(中---实验介绍),人工智能,具身智能,强化学习

D4 模型消融实验:在设计模型方面重要和实践的决策应该是什么?他们又将如何影响性能和泛化性?

可能的性能提升猜想包括(i) 模型的容量和表征能力,可以通过消融模型大小和试用其他结构来验证(e.g., 移除Transformer部分); (ii)特定的动作表征, 可以使得表征复杂的多模态动作分别更容易,可以通过转向连续(正态分布)动作,或者自回归动作表征; (iii) ImageNet预训练权重初始化,可以通过随机初始化进行验证;(iv)短历史帧输入,可以通过减少观测历史来验证。更具体地,消融实验包括(1)减少模型大小(参数了从 35M 降低到 21M), (2) 移除Transformer结构 (使用一个预训练的EfficientNet), (3)使用连续的动作空间(使用MSE损失和 多变量正太分布输出(multivariate normal output)), (4) 自回归训练动作, (5)移除ImageNet的预训练权重初始化, and (6) 移除历史(将历史6帧观测减少到当前单帧)。
具身智能controller---RT-1(Robotics Transformer)(中---实验介绍),人工智能,具身智能,强化学习

7 结论,局限和未来工作

结论

  1. RT-1在超过700个指令任务上达到97%的成功率,同时对新任务,物体和环境具有比之前工作更好的泛化性;.
  2. RT-1可以成功吸收多种数据,来自仿真环境或者其他机器人,不会牺牲在原来任务上面的性能,同时改进了对新场景的泛化性;
  3. 展示了这种性能和通用性如何可以被应用到SayCan框架中执行最多可达50步的long-horizon任务。

局限

  1. RT-1是一种模仿学习的方法,因此也继承了该类方法的缺陷,如无法超越示教者的能力;
  2. 对未见新指令的泛化性来自于以前见过的概念组合,对完全未见的指令任务不具备泛化性;
  3. 我们的方法应用在大规模但并不灵巧的操作任务.

未来工作

  1. 通过开发允许非专家来训练机器人的方法来加快机器人技能的扩充;
  2. 当前RT-1对错误诱导的鲁棒性很好,其对背景和环境的鲁棒性可以通过增加环境的多样性来提升;已有工作见diffusion-rosie;
  3. 通过可扩展的注意力和记忆来提升反应速度和文本记忆。

个人见解
RT-1模型上最大的创新在于使用了Transformer网络,其架构上也方便进行scale,比如输出可以按需增加或者减少,同时足以容纳足够多的训练数据,另外就是用充足的实验证明了机器人利用模仿学习里的BC训练方法可以从大量数据中学习到较泛化的能力,突出了数据的重要性,指引了通用机器人的一个研发方向。文章来源地址https://www.toymoban.com/news/detail-610531.html

到了这里,关于具身智能controller---RT-1(Robotics Transformer)(中---实验介绍)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【具身智能】AI仿真工具-Habitat安装教程

    Habitat 是一个具体人工智能研究平台,包括: Habitat-Sim :一种灵活的高性能 3D 模拟器,具有可配置代理、多个传感器和通用 3D 数据集处理(内置对 MatterPort3D、 Gibson和其他数据集的支持)。 Habitat-Sim 通常与 Habitat-Lab一起使用,Habitat-Lab 是一个模块化高级库,用于嵌入式 AI 中

    2024年03月24日
    浏览(27)
  • 具身智能,是机器人的“冷饭热炒”吗?

    大模型正如火如荼,下一个AI风口就来了。 如果你关注2023世界人工智能大会等行业峰会,以及英伟达、微软、谷歌、特斯拉和国內科技大厂的最新发布会,除了“大模型”,应该会听到另一个高频词——具身智能。 所谓具身智能Embodied AI ,指的是有身体并支持物理交互的智

    2024年02月15日
    浏览(45)
  • 奥比中光:进击具身智能,打造机器人之眼

    大数据产业创新服务媒体 ——聚焦数据 · 改变商业 跨过奇点的生成式人工智能是一个缸中大脑,只有赋予形体,才能与物理世界产生互动。 在5月的ITF世界半导体大会上,英伟达创世人兼CEO黄仁勋说,人工智能的下一波浪潮将是具身智能。 8月中旬,世界机器人大会在北京

    2024年02月11日
    浏览(43)
  • 新方向!文心一言X具身智能,用LLM大模型驱动智能小车

    具身智能已成为近年来研究的热点领域之一。具身智能强调将智能体与实体环境相结合,通过智能体与环境的交互,来感知和理解世界,最终实现在真实环境中的自主决策和运动控制。 如何基于文心大模型,低成本入门“具身智能”,并用身边的普通硬件就能快速搭建“能理

    2024年02月03日
    浏览(36)
  • 通用人工智能技术(深度学习,大模型,Chatgpt,多模态,强化学习,具身智能)

    目录 前言 1.通用人工智能 1.1 生物学分析 1.2具身智能 1.2.1当前的人工智能的局限 1.2.2 具身智能实现的基础 1.2.3 强化学习(决策大模型) 2.结论 往期文章 参考文献       目前的人工智能实质上只是强人工智能,或者说单个领域的通用人工智能。比方说Chatgpt它属于自然语言

    2024年02月07日
    浏览(82)
  • 人类自主行动背后的本质和具身人工智能未来的发展

    人类自主行动指的是人们自发地做出决策,采取行动

    2024年02月07日
    浏览(48)
  • “具身智能”浪潮中,达闼机器人的商业化“奇点”已然到来?

    当前,人形机器人产业正在快速发展,而2023年必将会是载入史册的一年。 具体来看,2023年,AI技术大爆发,可在语言、视觉、运动控制、降低研发成本等多方面赋能人形机器人产业发展。与此同时,特斯拉、波士顿动力、优必选、达闼、小米、傅利叶智能等海内外企业纷纷

    2024年01月16日
    浏览(47)
  • 【人工智能】Embodied AI :具身人工智能概述 | Overview of Embodied Artificial Intelligence

    从“互联网人工智能”时代到“具身人工智能”时代,人工智能算法和代理不再从主要来自互联网的图像、视频或文本数据集中学习。相反,他们通过与环境的互动从类似于人类的以自我为中心的感知中学习。因此,对支持各种具体人工智能研究任务的隐含人工智能模拟器的

    2024年02月09日
    浏览(51)
  • 大象机器人发布智能遥操作机械臂组合myArm M&C,加速具身智能研究与发展!

    在全球工业自动化和智能化加速发展的今天,机器人行业正经历着翻天覆地的变化。 具身智能研究 ,作为人工智能领域的关键分支,正努力在精准动作控制、高层次自主决策能力以及自然人机交互体验上赋予机器人新的能力。     在此背景下,大象机器人 myArm MC系列 应运

    2024年04月16日
    浏览(33)
  • 【具身智能模型1】PaLM-E: An Embodied Multimodal Language Model

    论文标题:PaLM-E: An Embodied Multimodal Language Model 论文作者:Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar, Pierre Sermanet, Daniel Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc Toussaint, Klaus

    2024年02月07日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包