回归预测 | MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测

这篇具有很好参考价值的文章主要介绍了回归预测 | MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

回归预测 | MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测

预测效果

回归预测 | MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测,回归预测,POA-CNN-BiLSTM,鹈鹕算法优化卷积双向长短期网络,多输入单输出回归预测
回归预测 | MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测,回归预测,POA-CNN-BiLSTM,鹈鹕算法优化卷积双向长短期网络,多输入单输出回归预测
回归预测 | MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测,回归预测,POA-CNN-BiLSTM,鹈鹕算法优化卷积双向长短期网络,多输入单输出回归预测

回归预测 | MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测,回归预测,POA-CNN-BiLSTM,鹈鹕算法优化卷积双向长短期网络,多输入单输出回归预测
回归预测 | MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测,回归预测,POA-CNN-BiLSTM,鹈鹕算法优化卷积双向长短期网络,多输入单输出回归预测
回归预测 | MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测,回归预测,POA-CNN-BiLSTM,鹈鹕算法优化卷积双向长短期网络,多输入单输出回归预测
回归预测 | MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测,回归预测,POA-CNN-BiLSTM,鹈鹕算法优化卷积双向长短期网络,多输入单输出回归预测
回归预测 | MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测,回归预测,POA-CNN-BiLSTM,鹈鹕算法优化卷积双向长短期网络,多输入单输出回归预测
回归预测 | MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测,回归预测,POA-CNN-BiLSTM,鹈鹕算法优化卷积双向长短期网络,多输入单输出回归预测

基本介绍

MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测(完整源码和数据)
1.MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测(完整源码和数据)
2.输入多个特征,输出单个变量,多输入单输出回归预测;
3.多指标评价,评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高;
4.鹈鹕算法优化参数为:学习率,隐含层节点,正则化参数;
5.excel数据,方便替换,运行环境2020及以上。

模型描述

POA-CNN-BiLSTM鹈鹕算法是一种用于回归预测的神经网络模型,它结合了卷积神经网络(CNN)、双向长短期记忆神经网络(BiLSTM)和多输入单输出的架构。
在这个模型中,卷积神经网络用于从输入数据中提取特征,双向长短期记忆神经网络用于处理序列数据,并且多输入单输出的架构可以同时处理多个输入变量并输出一个预测结果。这个模型的名称中的“鹈鹕”指的是一种候鸟,可能是因为这个模型可以处理多个输入变量,就像候鸟可以飞行和浮游。
优化这个模型的方法可以包括以下几个方面:
数据预处理:对输入数据进行预处理可以提高模型的性能。可以进行数据归一化、标准化,或者进行特征选择和降维等操作,以减少输入数据的维度和噪声,从而更好地提取特征。
超参数调优:选择合适的超参数可以提高模型的性能。
正则化:使用正则化技术可以减少模型的过拟合。可以使用L1、L2正则化、dropout等技术来避免模型过度拟合训练数据。
综上所述,优化POA-CNN-BiLSTM鹈鹕算法可以通过多种方法进行,通过这些方法的结合可以提高模型的性能和泛化能力,从而更好地预测回归结果。

回归预测 | MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测,回归预测,POA-CNN-BiLSTM,鹈鹕算法优化卷积双向长短期网络,多输入单输出回归预测

基于卷积神经网络和双向长短期记忆(BiLSTM)神经网络的深度学习网络结构。采用特征融合的方法,通过卷积网络提取出浅层特征与深层特征并进行联接,对特征通过卷积进行融合,将获得的矢量信息输入BiLSTM单元。

程序设计

  • 完整源码和数据获取方式1:私信博主,同等价值程序兑换;
  • 完整源码和数据下载方式2(资源处直接下载):MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测
  • 完整程序和数据下载方式3(订阅《组合优化》专栏,同时获取《组合优化》专栏收录的任意8份程序,数据订阅后私信我获取):MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测
%%  获取最优种群
   for j = 1 : SearchAgents
       if(fitness_new(j) < GBestF)
          GBestF = fitness_new(j);
          GBestX = X_new(j, :);
       end
   end
   
%%  更新种群和适应度值
   pop_new = X_new;
   fitness = fitness_new;

%%  更新种群 
   [fitness, index] = sort(fitness);
   for j = 1 : SearchAgents
      pop_new(j, :) = pop_new(index(j), :);
   end

%%  得到优化曲线
   curve(i) = GBestF;
   avcurve(i) = sum(curve) / length(curve);
end

%%  得到最优值
Best_pos = GBestX;
Best_score = curve(end);

%%  得到最优参数
NumOfUnits       =abs(round( Best_pos(1,3)));       % 最佳神经元个数
InitialLearnRate =  Best_pos(1,2) ;% 最佳初始学习率
L2Regularization = Best_pos(1,1); % 最佳L2正则化系数
% 
inputSize = k;
outputSize = 1;  %数据输出y的维度  
%  参数设置
opts = trainingOptions('adam', ...                    % 优化算法Adam
    'MaxEpochs', 20, ...                              % 最大训练次数
    'GradientThreshold', 1, ...                       % 梯度阈值
    'InitialLearnRate', InitialLearnRate, ...         % 初始学习率
    'LearnRateSchedule', 'piecewise', ...             % 学习率调整
    'LearnRateDropPeriod', 6, ...                     % 训练次后开始调整学习率
    'LearnRateDropFactor',0.2, ...                    % 学习率调整因子
    'L2Regularization', L2Regularization, ...         % 正则化参数
    'ExecutionEnvironment', 'gpu',...                 % 训练环境
    'Verbose', 0, ...                                 % 关闭优化过程
    'SequenceLength',1,...
    'MiniBatchSize',10,...
    'Plots', 'training-progress');                    % 画出曲线

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501文章来源地址https://www.toymoban.com/news/detail-610687.html

到了这里,关于回归预测 | MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包