GD32F4单片机实现接收超时中断+DMA实现串口的不定长接收和DMA发送

这篇具有很好参考价值的文章主要介绍了GD32F4单片机实现接收超时中断+DMA实现串口的不定长接收和DMA发送。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1、通常的实现方式介绍

  1. 环形缓冲区+定时器超时中断的方式
    • 优点
      • 环形缓冲区可以接收多帧数据
      • 数据帧超时间隔可以设置
    • 缺点
      • 设备任务比较繁重时,使用中断接收可能会丢失数据。尤其是在长时间关闭中断或者串口中断优先级不高时
      • 频繁进出中断。在使用RTOS的系统中,每收到一个数据就会进行一次任务到中断的切换和中断到任务的切换
  2. 使用串口接收空闲中断+DMA的方式
    • 优点
      • 不会频繁在任务和中断之间切换,效率会更高
      • 一般不会丢失数据
    • 缺点
      • 空闲中断的时间对于同一个波特率来说是固定的,但某些时候1个字节的接收时间太短,不能作为数据帧接收完成的标志

2、接收超时中断的相关内容

GD32F4系列的单片机串口除了空闲中断外,还有可配置时间的接收超时中断(STM32F4系列没有此中断、STM32L4系列有),使能配置在USART_CTL3寄存器的RTIE,如下图

gd32 串口中断,MCU,单片机,stm32,嵌入式硬件

接收超时标志在USART_STAT1寄存器的RTF,如下图

gd32 串口中断,MCU,单片机,stm32,嵌入式硬件

超时时间在USART_RT寄存器中**RT[23:0]**配置,如下图

gd32 串口中断,MCU,单片机,stm32,嵌入式硬件

其中RT24位,单位是波特率的位时间,即bps。举个例子,如果串口的参数配置位8-N-1(一个开始位、8个数据位、没有奇偶校验位、一个停止位),即一个字节的传输需要10个波特率的比特位,RT设置为100,则表示10(100/10)个字节的传输超时时间。

3、接收超时中断+DMA实现

​ 示例中用到了串口2DMA0通道1(串口2的DMA接收)和通道3(串口2的DMA发送),串口2的TxPB10RxPB11

  • 串口接收数据缓冲区

    #define BLE_UART USART2						///< 串口2
    #define RX_SERIAL_BUF_SIZE 256				///< 串口2的接收缓冲区大小
    static char recv_buf[RX_SERIAL_BUF_SIZE];	///< receive buffer
    static uint8_t uart2_rx_state = 0;			///< 串口接收完成标志。1表示接收完成
    static uint8_t uart2_tx_state = 0;			///< 串口DMA发送完成标志。1表示发送完成
    static uint16_t uart2_rx_len = 0;			///< 串口实际接收的数据长度
    
  • 串口中断处理函数

    /**
      * @brief uart2的中断处理函数
      *		只关心接收超时中断
      *
      * @retval void
      * 
      * @note 
      */
    void USART2_IRQHandler(void)
    {
    	/* UART接收超时中断 */
    	if ((usart_interrupt_flag_get(BLE_UART, USART_INT_FLAG_RT) != RESET) &&
    	        (usart_flag_get(BLE_UART, USART_FLAG_RT) != RESET))
    	{
    		/* disable DMA and reconfigure */
    		dma_channel_disable(DMA0, DMA_CH1);	//关闭DMA,在没有读取该接收帧数据之前禁止DMA再接收数据
    		dma_flag_clear(DMA0, DMA_CH1, DMA_FLAG_FTF);  // 清除DMA传输完成标志位  
    
    		/* Clear receiver timeout flag */
    //		usart_flag_clear(BLE_UART, USART_FLAG_RT);
    		usart_interrupt_flag_clear(BLE_UART,USART_INT_FLAG_RT);
    		usart_data_receive(BLE_UART); /* 清除接收完成标志位 */
    
    		// 设置接收的数据长度
    		uart2_rx_len = get_uart2_dma_recv_data_size();
    
    		/* 接收超时后,说明一帧数据接收完毕,置接收完成标志 */
    		uart2_rx_state = 1;
    	}
    }
    
  • DMA0_Channel1传输完成中断(用于串口的接收完成),正常情况下,此中断不会发生。

    /**
      * @brief DMA0_Channel1传输完成中断
      *		用于串口DMA接收
      * 	
      * @retval void
      * 
      * @note 因用到了串口的接收超时中断方式,正常情况下,串口的DMA接收完成不会发生
      */
    void DMA0_Channel1_IRQHandler(void)  
    {
    	if(dma_interrupt_flag_get(DMA0, DMA_CH1, DMA_INT_FLAG_FTF))
    	{
    	    dma_interrupt_flag_clear(DMA0, DMA_CH1, DMA_INT_FLAG_FTF);
    	//	uart2_rx_state = 1;
    		dma_channel_disable(DMA0, DMA_CH1);  // 关闭DMA接收传输
    	}
    }
    
  • DMA0_Channel3传输完成中断(用于串口的发送完成)

    /**
      * @brief DMA0_Channel3传输完成中断
      *		用于BLE模块的串口DMA发送
      *
      * @retval void
      * 
      * @note 
      */
    void DMA0_Channel3_IRQHandler(void)  
    {	
    	if(dma_interrupt_flag_get(DMA0, DMA_CH3, DMA_INT_FLAG_FTF))
    	{
    	    dma_interrupt_flag_clear(DMA0, DMA_CH3, DMA_INT_FLAG_FTF);
    		uart2_tx_state = 1;
    		dma_channel_disable(DMA0, DMA_CH3);  // 关闭DMA发送传输
        }
    }
    
  • 获取uart2串口DMA接收的数据长度

    /**
      * @brief 获取uart2串口DMA接收的数据长度.
      * 	
      * @retval void
      * 
      * @note 
      */
    static unsigned int get_uart2_dma_recv_data_size(void)
    {
        /*
        dma_transfer_number_get(DMA_CH2);是获取当前指针计数值,
        用内存缓冲区大小 - 此计数值 = 接收到的数据长度(这里单位为字节)。
        需要说明下在读取数据长度的时候需要先把接收DMA关闭,读取完了或者是数据处理完了在打开接收DMA,防止在处理的过程中有数据到来而出错。
        */
        return (RT_SERIAL_RB_BUFSZ - (dma_transfer_number_get(DMA0, DMA_CH1)));
    }
    
  • uart2串口初始化

    /**
      * @brief uart2串口初始化.
      *			串口接收通过DMA+接收超时中断实现,设置的超时时间为100个bps
      * 
      * @param baudrate 串口波特率
      *
      * @retval void
      * 
      * @note 
      */
    static void uart2_init(uint32_t baudrate)
    {
    	/*uart dma rx and tx set*/
    	dma_single_data_parameter_struct dma_init_uart;
    
    	/*****************************	配置uart2的gpio	*****************************/
    	/* enable GPIO clock */
    	rcu_periph_clock_enable(RCU_GPIOB);
    	/* connect port to USARTx_Tx */
    	gpio_af_set(GPIOB, GPIO_AF_7, GPIO_PIN_10);	
    	/* connect port to USARTx_Rx */
    	gpio_af_set(GPIOB, GPIO_AF_7, GPIO_PIN_11);
    	/* configure USART Tx as alternate function push-pull */
    	gpio_mode_set(GPIOB, GPIO_MODE_AF, GPIO_PUPD_PULLUP, GPIO_PIN_10);
    	gpio_output_options_set(GPIOB, GPIO_OTYPE_PP, GPIO_OSPEED_50MHZ, GPIO_PIN_10);
    	/* configure USART Rx as alternate function push-pull */
    	gpio_mode_set(GPIOB, GPIO_MODE_AF, GPIO_PUPD_PULLUP, GPIO_PIN_11);
    	gpio_output_options_set(GPIOB, GPIO_OTYPE_PP, GPIO_OSPEED_50MHZ, GPIO_PIN_11);
    
    	/*****************************	配置uart2的参数	*****************************/
    	/* enable USART clock */  
    	rcu_periph_clock_enable(RCU_USART2);
    	/* USART configure */
    	usart_deinit(BLE_UART);
    	usart_oversample_config(BLE_UART, USART_OVSMOD_8);
    	usart_baudrate_set(BLE_UART, baudrate); // 波特率
    	usart_parity_config(BLE_UART, USART_PM_NONE); // 校验位:NONE
    	usart_word_length_set(BLE_UART, USART_WL_8BIT); // 数据位:8
    	usart_stop_bit_set(BLE_UART, USART_STB_1BIT); // 停止位:1
    	usart_receive_config(BLE_UART, USART_RECEIVE_ENABLE); // 打开串口接收功能
    	usart_transmit_config(BLE_UART, USART_TRANSMIT_ENABLE); // 打开串口发送功能
    	// 接收超时设置,100个波特率的比特位
    	usart_receiver_timeout_threshold_config(BLE_UART, 100);
    	usart_interrupt_enable(BLE_UART, USART_INT_RT);
    	usart_receiver_timeout_enable(BLE_UART);
    	/* USART interrupt configuration */
    	nvic_irq_enable(USART2_IRQn, 0, 1);
    	usart_enable(BLE_UART);
    	usart_dma_receive_config(BLE_UART, USART_DENR_ENABLE); // 使能DMA接收功能
    	usart_dma_transmit_config(BLE_UART, USART_DENT_ENABLE); // 使能DMA发送功能
    
    	/*****************************	配置uart2的DMA接收	****************************/
    	/* enable DMA0 */
    	rcu_periph_clock_enable(RCU_DMA0);
    	/* deinitialize DMA channel */
    	dma_deinit(DMA0, DMA_CH1);
    	dma_init_uart.direction = DMA_PERIPH_TO_MEMORY;
    	dma_init_uart.memory0_addr = (uint32_t)(recv_buf); // 存储器地址
    	dma_init_uart.memory_inc = DMA_MEMORY_INCREASE_ENABLE;
    	dma_init_uart.periph_memory_width = DMA_PERIPH_WIDTH_8BIT;
    	dma_init_uart.number = sizeof(recv_buf);
    	dma_init_uart.periph_addr = (uint32_t)&USART_DATA(BLE_UART);
    	dma_init_uart.periph_inc = DMA_PERIPH_INCREASE_DISABLE;
    	dma_init_uart.priority = DMA_PRIORITY_ULTRA_HIGH;
    	dma_init_uart.circular_mode = DMA_CIRCULAR_MODE_DISABLE;
    	dma_single_data_mode_init(DMA0, DMA_CH1, &dma_init_uart);
    	dma_channel_subperipheral_select(DMA0, DMA_CH1, DMA_SUBPERI4);
        
        uart2_rx_state = 0;
        uart2_rx_len = 0;
        
    	//使能通道
    	dma_channel_enable(DMA0, DMA_CH1);
    
    	/*****************************	配置uart2的DMA发送	***************************/
    	/* deinitialize DMA channel */
    	dma_deinit(DMA0, DMA_CH3);
    	dma_init_uart.direction = DMA_MEMORY_TO_PERIPH;
    	dma_init_uart.memory0_addr = RT_NULL;  // 内存基地址
    	dma_init_uart.number = 0;  // len个数据
    	dma_single_data_mode_init(DMA0, DMA_CH3, &dma_init_uart);
    	dma_channel_subperipheral_select(DMA0, DMA_CH3, DMA_SUBPERI4);
    
    //	nvic_irq_enable(DMA0_Channel3_IRQn, 0, 2);
    
    	uart2_tx_state = 0;
    
    	return;
    }
    
  • 重新配置uart2串口的DMA接收通道

    /**
      * @brief 重新配置uart2串口的DMA接收通道
      * 	
      * @retval void
      * 
      * @note 
      */
    static void uart2_dma_rx_refcg(void)
    {
    	/* disable DMA and reconfigure */
    	dma_channel_disable(DMA0, DMA_CH1); //关闭DMA,在没有读取该接收帧数据之前禁止DMA再接收数据
    //	DMA_INTC0(DMA0) |= DMA_FLAG_ADD(DMA_CHINTF_RESET_VALUE, DMA_CH1);
    
    	dma_memory_address_config(DMA0, DMA_CH1, DMA_MEMORY_0, (uint32_t)(recv_buf)); // 存储器地址
    	dma_transfer_number_config(DMA0, DMA_CH1, sizeof(recv_buf););
    	
        uart2_rx_state = 0;
    	uart2_rx_len = 0;
        
    	// 使能通道
    	dma_channel_enable(DMA0, DMA_CH1);
    }
    
  • ​ DMA串口发送

    串口发送使用DMA方式时,直接调用uart2_sendData_DMA函数即可。等待发送完成时,可以通过等待(uart2_tx_state == 1)实现,或者等待DMA0通道3的DMA_FLAG_FTF置位实现,或者使用RTOS的信号量实现

    /**
      * @brief BLE模块的DMA串口发送.
      *		
      * 
      * @param data 发送数据缓冲区地址
      * @param len 发送数据长度
      *
      * @retval void
      * 
      * @note 
      */
    void uart2_sendData_DMA(uint8_t *data, uint32_t len)  
    {
    	/* disable DMA and reconfigure */
    	dma_channel_disable(DMA0, DMA_CH3);
    	dma_flag_clear(DMA0, DMA_CH3, DMA_FLAG_FTF);  // 清除DMA传输完成标志位
    
    	dma_memory_address_config(DMA0, DMA_CH3, DMA_MEMORY_0, (uint32_t)(data)); // 存储器地址
    	dma_transfer_number_config(DMA0, DMA_CH3, len);
    
    //	/* enable DMA0 channel3 transfer complete interrupt */
    //	dma_interrupt_enable(DMA0, DMA_CH3, DMA_CHXCTL_FTFIE);
    //	uart2_tx_state = 0;
    	dma_channel_enable(DMA0, DMA_CH3);  // 使能DMA传输
    
    	// 等待传输完成
    	while(dma_flag_get(DMA0, DMA_CH3, DMA_FLAG_FTF) == RESET)
    	{}
    
    //	// 等待传输完成
    //	while(uart2_tx_state == 0);
    	
    //	printf("uart2_sendData_DMA complete");
    }
    
  • 接收处理任务

    /**
      * @brief  main函数
      * @param  argc
      * @param  argv
      * @note   等待接收数据完成,然后做相应的处理
      * @retval None
      */
    int main(char argc, char *argv[])
    {
    	uart2_init(115200);
        
        while (1)
        {
            // 接收完成一帧数据
            if(uart2_rx_state == 1)
            {
                // 数据处理
                ... ...
                
                // 处理完成后,重新启动串口的DMA接收
                uart2_dma_rx_refcg();
            }
    		
            // 其他处理
            ... ...
        }
    }
    

公众号 | FunIO
微信搜一搜 “funio”,发现更多精彩内容。
个人博客 | blog.boringhex.top文章来源地址https://www.toymoban.com/news/detail-610767.html

到了这里,关于GD32F4单片机实现接收超时中断+DMA实现串口的不定长接收和DMA发送的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 单片机GD32F303RCT6 (Macos环境)开发 (二十)—— 光感芯片veml7700的使用

    1、veml有7个寄存器,每个十六位,见图。 00是config寄存器, 01 02 是中断设置的阈值 03是节能模式的设置 04 是得到的光的亮度值 05是得到的data of whole WHITE 06是中断设置值。 2、我们只测试得到光的亮度值,所以veml寄存器设置如下: 设置gain,integration time ,power save mode ,interrup

    2024年02月04日
    浏览(29)
  • (第48-59讲)STM32F4单片机,FreeRTOS【事件标志、任务通知、软件定时器、Tickless低功耗】【纯文字讲解】【】

    【吐血总结】FreeRTOS难点、Systick中断-滴答定时器、PendSV中断-任务切换、SVC中断-系统底层、时间片调度-时钟节拍【已完结】 (第1-8讲)STM32F4单片机,FreeRTOS基础知识总结【视频笔记、代码讲解】【正点原子】【原创】 (第9-10讲)STM32F4单片机,FreeRTOS任务创建和删除(动态方

    2024年02月01日
    浏览(30)
  • STM32F407单片机HAL库CAN2不能接收数据解决方法

      最近在使用stm32F407的片子调试can通信,直接在正点原子的代码上修改调试,调试can1的时候,基本没啥问题,收发都正常,使用查询模式和中断模式都可以。但是当修改到can2的时候,可以正常发送数据,但是中断函数始终进不去。折腾了一两个小时终于搞定了。下面将解

    2024年02月16日
    浏览(17)
  • 调试记录 单片机GD32F103C8T6(兆易创新) 程序烧写完成但是没有现象 (自己做的板子)

    CPU内核:ARM  Cortex-M3 CPU最大主频:108MHz 工作电压范围:2.6V~3.6V 程序存储容量:64KB 程序存储器类型:FLASH RAM, 总容量:20KB GPIO端口数量:37 最高主频可达108MHz, 资料链接:1473490296871.pdf (szlcsc.com) 1.  烧写最简单的 跑马灯程序,但是板子上的LED灯没有反应。 2.  检查单片机

    2024年02月06日
    浏览(18)
  • 单片机(STM32,GD32,NXP等)中BootLoader的严谨实现详解

    Bootloader( 引导加载程序 )的主要任务是引导加载并运行应用程序,我们的软件升级逻辑也一般在BootLoader中实现。本文将详细介绍BootLoader在单片机中的实现,包括 STM32、GD32、NXP Kinetis 等等的所有单片机,因为无论是什么样的芯片,它实现的逻辑都是一样的。 注意,本篇文章主

    2024年02月02日
    浏览(34)
  • APM32F072单片机进入STOP模式,并通过RTC Wakeup Timer和USART1串口接收事件唤醒

    串口初始化(注意USART1时钟源要选择HSI): 使用power_init函数初始化RTC,然后调用power_enter_stop_mode(n)函数进入STOP模式,n秒后自动唤醒,或由USART1接收唤醒:

    2024年02月13日
    浏览(21)
  • (软件03)单片机串口处理思路,超时接收的方法

        软件学习前言     代码思路     实操练习         最近写了两篇硬件分享文章,要做的一个通过485串口接收指令,从而控制电机转速的内容。里面涉及到了串口的处理,于是便想写一下关于串口处理的相关经验分享,串口也是非常重要的,不管是printf打印log信息,

    2024年02月01日
    浏览(16)
  • 【GD32单片机】GD32工程构建,快速上手GD32

    之前在学校接触最多的是STM32单片机,但出来工作后发现,GD32或MM32单片机却是经常能接触到的,虽然学习资料和生态没有STM32好,但基本芯片内外设资源却差不多,开发起来大同小异。 在开始构建工程之前需要去GD32的官网下载一些资料; 打开官网 https://www.gigadevice.com.cn/ 选

    2024年02月03日
    浏览(15)
  • GD32单片机和STM32单片机的对比分析

    GD32单片机和STM32单片机都是基于Arm Cortex-M3/M4内核的32位通用微控制器,广泛应用于各种嵌入式系统和物联网领域。两者之间有很多相似之处,但也有一些不同之处,本文将从以下几个方面对比分析两者的特点、优势和开发成本。 GD32单片机采用的是二代的M3/M4内核,而STM32单片

    2024年02月16日
    浏览(24)
  • 关于STM32F4和GD32F4以太网,LAN8720+lwip+freemodbus,实现modbus tcp

    关于STM32F4和GD32F4以太网,LAN8720+lwip+freemodbus 这里使用了大佬 小灰灰搞电子 的代码,文章看 STM32F407+LAN8720移植Lwip和freeModbus实现MODBUS TCP 代码看 STM32F407+LAN8720+LWIP移植freemodbus TCP.zip 他的代码是基于正点原子F407的板子开发的,如果是别的板子,需要修改引脚 小灰灰的代码里,没

    2024年02月14日
    浏览(16)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包