排队理论简介

这篇具有很好参考价值的文章主要介绍了排队理论简介。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


本文参考文献为Вентцель Е. С.的《Исследование операций》。

1. 理论背景

排队理论又称大众服务理论,顾名思义指的是在有限的服务条件下服务大量人员的一种理论情景。日常生活中常见的场景如,排队的电话亭、等待理发的顾客、售票窗口、商店结账处等等。

显然,这些排队情景中都有一些共性。如:

  1. 每个排队情景必然包括若干“服务人员”,称之为服务通道。一个排队情景中可以有一个或多个服务通道。
  2. 每个排队情景中必然也包括若干申请流(或称请求流),这些请求在某个随机时刻进入该排队系统。
  3. 当前正在处理的申请会占据一定的时间,在这段时间之后,处理该申请的通道会“放空”并等待处理下一个申请。
  4. 当有多余的申请等待处理时,该申请有2种情况:要么等待被处理,形成“队列”(即排队),要么离开该服务通道。
  5. 除4中的情况外,一个服务通道还可能处于非满载状态或停工状态。

一个服务通道能够成功处理的申请数,称为通过性。而排队理论研究的正是申请流、服务通道数量、服务通道的工作能力、排队系统的工作规则、工作效率等问题。

一般地,衡量一个排队系统的效率特征可以用以下的方式:

  • 单位时间内可以处理的申请平均数量;
  • 无法被满足、使排队系统无法服务的申请所占的百分比;
  • 提交的申请能及时被处理的概率;
  • 排队等候的平均用时;
  • 等候用时的时长的分布律;
  • 申请队列中的申请平均数量;
  • 队列中申请数量的分布律;
  • 单位时间内排队系统带来的平均收入。

2. 研究的数学方法

如果排队系统中的随机过程是马尔科夫过程,那么对排队系统的数学建模将会很简单。而如果排队系统中的过程确实是马尔科夫过程,那么逐个发生的事件流必须是泊松过程,即每个单独的事件都没有相应的后果或后续动作。对于排队过程来说,即需要申请流和服务流都满足泊松过程。然而业已证明,排队系统越复杂,服务通道越多,则越可以近似于马尔科夫过程。因此,采用马尔科夫过程研究排队理论并无大碍。

在研究排队过程之前,需要知道系统中的几个基本参数。
n n n – 服务通道数量;
λ \lambda λ – 申请流的强度;
μ \mu μ – 每个服务通道的处理能力(工作产能),即每个服务通道单位时间内可处理的申请的平均数量;
形成排队的条件(若存在)。

设排队系统中的申请流和服务流都是泊松过程,且为定常的,参数不随时间变化。而每2个事件之间的时间间隔 T T T是随机变量,其分布满足如下概率分布密度函数:
f ( t ) = λ e − λ t ( t > 0 ) f(t) = \lambda {\rm e}^{-\lambda t} \quad (t > 0) f(t)=λeλt(t>0)

3. 拒绝型排队系统与等候型排队系统

排队系统分为2类:

  • 拒绝型。当所有服务通道都被占用时,新的申请会被拒绝,离开排队系统并之后不再参与进来。
  • 等候型。当所有服务通道都被占用时,新的申请加入等候队列。当某个通道处理完上一个申请变为空时,就从等候队列中转移一个申请至该通道并处理。

接下来将着重讲解拒绝型排队系统的数学模型。

4. 拒绝型排队系统

对于拒绝型排队系统来说,衡量其效率的指标称为绝对通过性,指的是单位时间内系统可以处理的申请的平均数量。与之对应的概念是相对通过性,指单位时间内被系统处理的申请的平均数,与该时间段内新增的申请数之比值

设系统中有 n n n个服务通道。根据被占用的通道的个数,将系统的状态分为如下几类:
S 0 S_0 S0 – 所有服务通道都空;
S 1 S_1 S1 – 只有一个服务通道被占用,其他通道都空;
⋯ \cdots
S k S_k Sk – 有 k k k个通道被占用,其他通道都空;
⋯ \cdots
S n S_n Sn – 所有 n n n个通道都被占用。

如下图所示是拒绝型排队系统的示意图。
排队理论简介,优化方法,数学建模
一开始系统中没有申请,所有服务通道为空,系统状态为 S 0 S_0 S0。当有一个申请加入时,占用一个服务通道,系统状态从 S 0 S_0 S0变为 S 1 S_1 S1,即 S 0 → S 1 S_0 \rightarrow S_1 S0S1,此过程的强度(或密度)为 λ \lambda λ,可以理解为单位时间内新增了 λ \lambda λ个申请。以此类推,直到所有 n n n个通道均被占用。从低占用向高占用转化的过程中,每个状态转化的强度都是 λ \lambda λ

当系统处于 S 1 S_1 S1状态,而该申请被完成时,系统将变成 S 0 S_0 S0状态,即 S 1 → S 0 S_1 \rightarrow S_0 S1S0。此过程的强度(或密度)为 μ \mu μ,可以理解为一个被占用的服务通道单位时间内可以服务 μ \mu μ个申请。值得注意的是,从高占用向低占用转化的过程的强度并非全是 μ \mu μ,如图所示, S k + 1 → S k S_{k+1} \rightarrow S_k Sk+1Sk过程的强度为 ( k + 1 ) μ \left( k+1 \right) \mu (k+1)μ

利用柯尔莫哥洛夫方程,对图中每个状态的“入量”和“出量”进行描述,可以得到每个状态的柯尔莫哥洛夫方程。如,对于某个状态 S k S_k Sk来说,其“出量”(即图中从方块 S k S_k Sk发出的箭头)有两个,分别是方块 S k S_k Sk右上的 λ \lambda λ和左下的 k μ k \mu kμ;而“入量”(即图中进入方块 S k S_k Sk的箭头)也有2个,分别是方块 S k S_k Sk左上的 λ \lambda λ和右下的 ( k + 1 ) μ (k+1) \mu (k+1)μ。那么,状态 S k S_k Sk概率可以描述为
d p k d t = − ( λ + k μ ) p k + λ p k − 1 + ( k + 1 ) μ p k + 1 \frac{ {\rm d} p_k }{ {\rm d} t } = -\left( \lambda + k \mu \right) p_k + \lambda p_{k-1} + (k+1) \mu p_{k+1} dtdpk=(λ+kμ)pk+λpk1+(k+1)μpk+1上式的含义是:

  1. 所有方块 S k S_k Sk的出量均为负项,而入量为正项;
  2. 出量有2个:1) 右上的 λ \lambda λ S k S_k Sk出发,其概率为 p k p_k pk,故该项是 − λ p k -\lambda p_k λpk;2) 左下的 k μ k \mu kμ也从 S k S_k Sk出发,其概率也是 p k p_k pk,故该项是 − k μ p k -k \mu p_k kμpk
  3. 入量有2个:1) 右下的 ( k + 1 ) μ (k+1) \mu (k+1)μ从上一个状态 S k + 1 S_{k+1} Sk+1出发,其概率对应是 p k + 1 p_{k+1} pk+1,故该项是 ( k + 1 ) μ p k + 1 (k+1) \mu p_{k+1} (k+1)μpk+1;2) 左上的 λ \lambda λ从上一个状态 S k − 1 S_{k-1} Sk1出发,其概率对应是 p k − 1 p_{k-1} pk1,故该项是 λ p k − 1 \lambda p_{k-1} λpk1
  4. 注意:从哪个方块 S i S_i Si出发,概率 p i p_i pi的下标就要和方块的下标对应!概率 p i p_i pi取决于箭头的出发地而不是指向地!

由此可以写出图中的微分方程关系:
d p 0 d t = − λ p 0 + μ p 1 d p 1 d t = − ( λ + μ ) p 1 + λ p 0 + 2 μ p 1 ⋮ d p k d t = − ( λ + k μ ) p k + λ p k − 1 + ( k + 1 ) μ p k + 1 ⋮ d p n d t = − n μ p n + λ p n − 1 (1) \begin{aligned} \frac{ {\rm d} p_0 }{ {\rm d} t } &= - \lambda p_0 + \mu p_1 \\ \frac{ {\rm d} p_1 }{ {\rm d} t } &= - \left( \lambda + \mu \right) p_1 + \lambda p_0 + 2\mu p_1 \\ \vdots \\ \frac{ {\rm d} p_k }{ {\rm d} t } &= - \left( \lambda + k\mu \right) p_k + \lambda p_{k-1} + (k+1) \mu p_{k+1} \\ \vdots \\ \frac{ {\rm d} p_n }{ {\rm d} t } &= - n\mu p_n + \lambda p_{n-1} \\ \tag{1} \end{aligned} dtdp0dtdp1dtdpkdtdpn=λp0+μp1=(λ+μ)p1+λp0+2μp1=(λ+kμ)pk+λpk1+(k+1)μpk+1=nμpn+λpn1(1)上述方程称为艾拉姆咖方程。初始条件为
p 0 ( 0 ) = 1 , p 1 ( 0 ) = p 2 ( 0 ) = ⋯ = p n ( 0 ) = 0 p_0 (0) = 1, \qquad p_1(0) = p_2(0) = \cdots = p_n(0) = 0 p0(0)=1,p1(0)=p2(0)==pn(0)=0艾拉姆咖方程往往无法手解,需要通过计算机辅助求解,得到结果 p i ( t ) p_i(t) pi(t)每种状态出现的概率

另外,在实际运用中往往还感兴趣状态的边界概率,指系统的稳态模式下的概率。这里不加推导地给出公式:
p k = λ k μ ⋅ 2 μ ⋯ k μ p 0 = ( λ / μ ) k k ! p 0 p 0 = 1 1 + λ / μ 1 ! + ( λ / μ ) 2 2 ! + ⋯ + ( λ / μ ) n n ! p_k = \frac{\lambda^k}{\mu \cdot 2\mu \cdots k\mu} p_0 = \frac{ \left( \lambda / \mu \right)^k}{k!} p_0 \\ p_0 = \frac{1}{ 1 + \frac{\lambda / \mu}{1!} + \frac{ \left( \lambda / \mu \right)^2}{2!} + \cdots + \frac{ \left( \lambda / \mu \right)^n}{n!} } pk=μ2μkμλkp0=k!(λ/μ)kp0p0=1+1!λ/μ+2!(λ/μ)2++n!(λ/μ)n1 λ / μ = ρ \lambda / \mu = \rho λ/μ=ρ称为换算强度,其物理意义是:在处理一个请求的平均时长内,到来(新增)的请求的平均数量

则上述边界概率公式可改写为
p k = ρ k k ! p 0 p_k = \frac{\rho^k}{k!} p_0 pk=k!ρkp0 p 0 = 1 1 + ρ 1 ! + ρ 2 2 ! + ⋯ + ρ n n ! (2) p_0 = \frac{1}{ 1 + \frac{\rho}{1!} + \frac{ \rho^2}{2!} + \cdots + \frac{ \rho^n}{n!} } \tag{2} p0=1+1!ρ+2!ρ2++n!ρn1(2)式(2)同样称为艾拉姆咖方程。

显然,所有通道都被占用的概率是 p n p_n pn,那么“新增申请能够被处理”的概率为
q = 1 − p n q = 1 - p_n q=1pn进而绝对通过性
A = λ q = λ ( 1 − p n ) A = \lambda q = \lambda \left(1 - p_n \right) A=λq=λ(1pn)则繁忙通道的平均个数 k ˉ \bar k kˉ可以表示为加权和:
k ˉ = 0 ⋅ p 0 + 1 ⋅ p 1 + ⋯ + n ⋅ p n \bar k = 0 \cdot p_0 + 1 \cdot p_1 + \cdots + n \cdot p_n kˉ=0p0+1p1++npn即为数学期望。
另一方面,由于绝对通过性表示单位时间内处理的申请的平均数量,而一个被占用的服务通道在单位时间内可以处理 μ \mu μ个申请,故繁忙通道的平均个数亦可表示为
k ˉ = A μ = λ ( 1 − p n ) μ = ρ ( 1 − p n ) \bar k = \frac{A}{\mu} = \frac{ \lambda \left(1 - p_n \right) }{\mu} = \rho \left( 1 - p_n\right) kˉ=μA=μλ(1pn)=ρ(1pn)文章来源地址https://www.toymoban.com/news/detail-611144.html

到了这里,关于排队理论简介的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数学建模 优化问题——数学规划

    优化问题 :在一系列客观或主观限制条件下,寻求使所关注的某个或多个指标达到最大(或最小)的决策 结构设计、资源分配、生产计划、运输方案中经常可见 通常的解决手段: 经验积累、主观判断 做试验、比优劣 建立数学模型,求解最优策略 解决优化问题的数学方法: 数

    2024年02月06日
    浏览(47)
  • 【数学建模】步长的选择(优化建模)

    人们每天都在行走,排除以运动健身为目的的走路方式,而仅仅考虑距离固定,以节省体力为最终目的的行走,那么选择多大的步长才最省力? 人在走路时所做的功等于抬高人体重心所需的势能与两腿运动所需的动能之和。在给定速度时,可以以单位时间内做功最小,即消耗

    2024年02月04日
    浏览(37)
  • 数学建模(二):优化

    目录  👉🏻历史回顾👈🏻 ✨前言 🔍一、什么是启发式算法?

    2024年02月02日
    浏览(42)
  • 数学建模优化问题

    一、选修课程策略问题 某学校规定,运筹学专业的学生毕业时必须至少学习过两门数学课、三门运筹学课和两门计算机课。这些课程的编号、名称、学分、所属类别和先修课要求如表1所示。那么,毕业时学生最少可以学习这些课程中哪些课程。 如果某个学生既希望选修课程

    2024年04月26日
    浏览(45)
  • 数学建模——公交调度优化

    本文通过建立利润阈值模型鉴定高平峰期,综合考虑公交线路资源配置与乘客候车时间,建立多目标优化模型,通过人工免疫算法算法对公交调度方案进行优化,通过建立梯度提升树模型预测客流量,从而预测“高峰”和“平峰”时期。 考虑到市民出行并不是“均匀”的,“

    2024年02月06日
    浏览(31)
  • 数学建模:多目标优化算法

    🔆 文章首发于我的个人博客:欢迎大佬们来逛逛 算法流程: 两个目标权重求和,化为单目标函数,然后求解最优值 min ⁡ x ∑ i = 1 m w i F i ( x )  s.t.  g ( x ) ⩽ 0 h ( x ) = 0 begin{array}{ll}min _{x} sum_{i=1}^{m} {w_{i} F_{i}(x)} \\\\\\\\text { s.t. } g(x) leqslant 0 \\\\\\\\ h(x)=0end{array} min x ​  s.t. 

    2024年02月08日
    浏览(47)
  • 数学建模——模拟退火优化投影寻踪

    提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档   在考虑综合评价的时候,我们使用了各自主观、客观的方法去求解权重,客观权重的计算依靠着数据本身的分布来决定,有时候会出现各种各样不可抗拒的意外情况,其中在熵权法的解释在就有提到

    2024年02月11日
    浏览(46)
  • 【数学建模】优化模型——规划模型

    在数学建模中,优化类问题是很常见的一种问题。这种问题里面通常涉及多个 变量 和 约束条件 ,并需要在这些变量和条件之下 优化某个函数 。最常见的例子就是,“达到最好效果”、“取得最大利润”、“极大降低风险”等等。遇到这类字眼,应首先考虑优化模型求解。

    2024年01月25日
    浏览(39)
  • 数学建模1:lingo软件求解优化模型

    本次数学建模学习笔记系列,以代码学习为主,附带建模及论文亮点记录 由于队友为两位经济学小伙伴,因此以大数据类型题目为主要学习方向 注:论文代码资料来源网络 1、结构清晰(后附该论文前两问的目录结构) 2、lingo求解优化模型,涉及函数循环与求和 3、表格很好

    2024年02月08日
    浏览(61)
  • 数学建模:智能优化算法及其python实现

    优化问题是指在满足一定条件下,在众多方案或参数值中寻找最优方案或参数值,以使得某个或多个功能指标达到最优,或使系统的某些性能指标达到最大值或最小值。优化问题广泛地存在于信号处理、图像处理、生产调度、任务分配、模式识别、自动控制和机械设计等众多

    2024年02月03日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包