磁共振图像处理中 fft1c 和 ifft1c 函数的 Python 实现

这篇具有很好参考价值的文章主要介绍了磁共振图像处理中 fft1c 和 ifft1c 函数的 Python 实现。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

fft1cifft1c 是 MRI 图像处理的常用函数。通常使用如下的 Matlab 实现 (Michael Lustig,2005)

function res = ifft1c(x,dim)

% res = fft1c(x)
% 
% orthonormal forward 1D FFT
%


n=size(x,dim);
shft=zeros(1,5);
shft(dim)=ceil(n/2);

x=circshift(x,shft);

fx=ifft(x,[],dim);

fx=circshift(fx,shft);

res = sqrt(n)*fx;

function res = fft1c(x,dim)

% res = fft1c(x,dim)
% 
% orthonormal forward 1D FFT
%
% (c) Michael Lustig 2005

n=size(x,dim);
shft=zeros(1,4);
shft(dim)=-ceil(n/2);

x=circshift(x,shft);

fx=fft(x,[],dim);

fx=circshift(fx,shft);

res = 1/sqrt(n)*fx;


但笔者在尝试将一个需要使用 ifft1c 函数移植到 Python 中时发现,无论是现有库还是其他现有开源代码很少有 ifft1c 的 Python 实现,Github 中少数的几个实现也和 Matlab 版不同,这给 debug 带来了不便。因此此处给出笔者的 ifft1c Python 版实现,与 Matlab 版最大程度的保持了一致

ifft1c

import numpy as np
import math
import scipy


def iff1c(x, dim):
    n = np.size(x, dim)

    shft = np.zeros(5, dtype=int)

    shft[dim] = math.ceil(n / 2)

    shft = tuple(shft)

    x = np.roll(x, shift=shft, axis=dim)  # how to deal with more than 2?

    fx = scipy.fft.ifft(x, axis=dim)

    fx = np.roll(fx, shft, axis=dim)

    return math.sqrt(n) * fx

fft1c文章来源地址https://www.toymoban.com/news/detail-611192.html

import numpy as np
import math
import scipy


def ff1c(x, dim):
    n = np.size(x, dim)

    shft = np.zeros(4, dtype=int)

    shft[dim] = -math.ceil(n / 2)

    shft = tuple(shft)

    x = np.roll(x, shift=shft, axis=dim)  # how to deal with more than 2?

    fx = scipy.fft.fft(x, axis=dim)

    fx = np.roll(fx, shft, axis=dim)

    return math.sqrt(n) * fx

到了这里,关于磁共振图像处理中 fft1c 和 ifft1c 函数的 Python 实现的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数字图像处理实验(二)|图像变换{离散傅里叶变换fft2,离散余弦变换dct2、频谱平移fftshift}(附实验代码和截图)

    1了解图像变换的原理; 2理解图像变换系数的特点; 3掌握图像变换的方法及应用; 4掌握图像的频谱分析方法; 5了解图像变换在图像数据压缩、图像滤波等方面的应用。 安装了MATLAB软件的台式或笔记本电脑 1.离散傅里叶变换 对于二维离散信号,Fourier正变换定义为: 二维离

    2024年02月06日
    浏览(50)
  • 基于OpenCV的传统视觉应用 -- OpenCV图像处理 图像模糊处理 图像锐化处理

    图像处理是用计算机对图像进行分析,以获取所需结果的过程,又称为影像处理。图像处理一般是指数字图像的处理。数字图像是用工业相机、摄像机、扫描仪等设备经过拍摄得到的一个大的二维数组,该数组的元素称为像素,其值称为灰度值。 均值滤波是指任意一点的像素

    2024年02月07日
    浏览(68)
  • 彩色图像处理之彩色图像直方图处理的python实现——数字图像处理

    彩色图像的直方图处理是一种重要的图像处理技术,用于改善图像的视觉效果,增强图像的对比度,或为后续的图像处理任务(如图像分割、特征提取)做准备。彩色图像通常由红色(R)、绿色(G)、蓝色(B)三个颜色通道组成,因此彩色图像的直方图处理相比单色图像更

    2024年01月23日
    浏览(66)
  • 数字图像处理实验——数字图像处理初步

    一、实验目的与要求 1.熟悉及掌握在MATLAB中能够处理哪些格式的图像; 2.熟练掌握在MATLAB中如何读取图像及图像的属性信息(大小、颜色、亮度(灰度)、宽度、高度等); 3.掌握如何在MATLAB中按照指定要求存储一副图像的方法; 4.了解图像的算术运算在数字图像中的初步应

    2024年02月04日
    浏览(49)
  • 数字信号与图像处理实验三:图像处理基础与图像变换

    ​ 通过本实验加深对数字图像的理解,熟悉MATLAB中的有关函数;应用DCT对图像进行变换;熟悉图像常见的统计指标,实现图像几何变换的基本方法。 ​ 选择两幅图像,读入图像并显示,同时使用Matlab计算图像的大小,灰度平均值、协方差矩阵、灰度标准差和相关系数。 DC

    2024年02月04日
    浏览(57)
  • 数字图像处理第六章——彩色图像处理

    目录 引言 一、彩色基础 二、彩色模型 2.1 RGB彩色模型 2.2 CMY和CMYK彩色模型  2.3 HSI彩色模型 三、伪彩色图像处理 3.1 灰度分层 3.2 灰度到彩色的变换 四、彩色变换 ​编辑色调与色彩校正 五、平滑与锐化 5.1 平滑 5.2 锐化         在图像处理中,彩色的运用受两个主要因素

    2024年02月09日
    浏览(57)
  • Matlab图像处理基础(1):图像表示,点处理

    目录 0. 概要 1. 图像表示 Image Representation 1.1 图像格式 Image format 1.2 图像分辨率 resolution of image 1.3 图像的编码 1.4 Matlab图像加载、显示和保存  1.5 Image Information 1.6 图像格式转换 1.7 其它类型的像素 1.8 像素数值格式 1.9 图像数据的访问和引用 3. 点处理 Point Processing 3.1 关于像

    2023年04月08日
    浏览(48)
  • Python图像处理【23】分布式图像处理

    Python 已逐渐成为数据分析/处理领域中的主要语言,这得益于 Python 丰富的第三方库,但是,这些库的设计并未在分布式上进行扩展。 Dask 是为了原生地扩展这些 Python 库及其生态系统而开发的,它能够与现有的 Python 生态系统兼容,将其扩展到多核计算机和分布式集群中。

    2024年03月23日
    浏览(50)
  • python数字图像处理基础(四)——图像平滑处理、形态学操作、图像梯度

    让有噪音点(图像上显得突兀的像素点)的图像变得更加自然顺眼 1.均值滤波 blur() 根据核的大小(rowcol),每个像素值就等于以此像素为中心的周围rowcol个像素的平均值。 核大一点,显然越平滑、模糊。 result = cv2.blur(img, (15, 15)) 2.方框滤波 boxFilter() normalize=true的时候,效果同

    2024年01月18日
    浏览(77)
  • 基于matlab的数字图像处理之彩色图像处理

    一、实验目的 (1)了解如何利用RGB分量生成简单的图像。 (2)熟练掌握RGB彩色模型转换到HIS彩色模型的过程。 (3)熟练掌握RGB图像的彩色分割。 (4)熟练掌握彩色图像如何在向量空间中进行边缘检测。 二、实验仪器(软件平台)     计算机、MATLAB软件 三、实验原理

    2024年02月06日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包