【FFNN负荷预测】基于人工神经网络的空压机负荷预测(Matlab代码实现)

这篇具有很好参考价值的文章主要介绍了【FFNN负荷预测】基于人工神经网络的空压机负荷预测(Matlab代码实现)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

2.1 算例1

2.2 算例2

2.3 算例3 

🎉3 参考文献

🌈4 Matlab代码、数据、文章


💥1 概述

摘要:

空气压缩机系统约占美国和欧盟工业用电量的10%。由于许多研究已经证明了使用人工神经网络进行空压机性能预测的有效性,因此仍然需要预测空压机的电气负荷曲线。本研究的目的是预测压缩空气系统的电气负载曲线,这对于行业从业者和软件提供商开发更好的负载管理和前瞻调度程序的实践和工具很有价值。采用两层前馈神经网络和长短期记忆两种人工神经网络对空压机的电气负荷进行预测。对具有三种不同控制机构的压缩机进行了评估,总共进行了 11,874 次观察。使用样本外数据集和 5 倍交叉验证对预测进行了验证。模型产生的平均决定系数值为0.24-0.94,平均均方根误差为0.05 kW - 5.83 kW,平均绝对比例误差为0.20 - 1.33。结果表明,两种人工神经网络对使用变速驱动的压缩机(平均R2 = 0.8且无中殿预测)均有较好的结果,只有长短期记忆模型对使用开/关控制的压缩机给出了可接受的结果(平均R2 = 0.82且无中殿预测),而对装卸式空压机(构成中殿预测的模型)没有获得满意的结果。

原文摘要:

Air compressor systems are responsible for approximately 10% of the electricity consumed in United States and European Union industry. As many researches have proven the effectiveness of using Artificial Neural Network in air compressor performance prediction, there is still a need to forecast the air compressor electrical load profile. The objective of this study is to predict compressed air systems' electrical load profile, which is valuable to industry practitioners as well as software providers in developing better practice and tools for load management and look-ahead scheduling programs. Two artificial neural networks, Two-Layer Feed-Forward Neural Network and Long Short-Term Memory were used to predict an air compressors electrical load. Compressors with three different control mechanisms are evaluated with a total number of 11,874 observations. The forecasts were validated using out-of-sample datasets with 5-fold cross-validation. Models produced average coefficient of determination values from 0.24 to 0.94, average root-mean-square errors from 0.05 kW - 5.83 kW, and mean absolute scaled errors from 0.20 to 1.33. The results indicate that both artificial neural networks yield good results for compressors using variable speed drive (average R2 = 0.8 and no naïve forecasting), only the long short-term memory model gives acceptable results for compressors using on/off control (average R2 = 0.82 and no naïve forecasting), and no satisfactory results are obtained for load/unload type air compressors (models constituting naïve forecasting).

📚2 运行结果

2.1 算例1

【FFNN负荷预测】基于人工神经网络的空压机负荷预测(Matlab代码实现),matlab,深度学习,机器学习

【FFNN负荷预测】基于人工神经网络的空压机负荷预测(Matlab代码实现),matlab,深度学习,机器学习

2.2 算例2

【FFNN负荷预测】基于人工神经网络的空压机负荷预测(Matlab代码实现),matlab,深度学习,机器学习

【FFNN负荷预测】基于人工神经网络的空压机负荷预测(Matlab代码实现),matlab,深度学习,机器学习

2.3 算例3 

【FFNN负荷预测】基于人工神经网络的空压机负荷预测(Matlab代码实现),matlab,深度学习,机器学习

 部分代码:

RMSE = sqrt(mean((y - yhat).^2));  % calculate root mean squared error

MASE = mean(abs(y-yhat))/(mean(abs(y(2:end)-y(1:end-1)))); % calculate mean absolute scaled error

mdl = fitlm(y,yhat);

R2 = mdl.Rsquared.Ordinary; % get R2 between observed and predicited

T =  table (RMSE,MASE, R2,'RowNames',{'Working Days'}); % construct output table
T.Properties.DimensionNames{1} = 'Mode';

figure
subplot(2,1,1)
plot(y)
hold on
plot(yhat,'.-')
hold off
legend(["Measured" "Predicted"])
xlabel("Timestep (15-minutes)") 
ylabel("Electrical Load (kW)")  
title(["Forecast using FFNN";"Compressor 3"])

subplot(2,1,2)
stem(yhat - y)
xlabel("Timestep (15-minutes)")
ylabel("Error (kW)")
title("RMSE = " + RMSE)

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

【FFNN负荷预测】基于人工神经网络的空压机负荷预测(Matlab代码实现),matlab,深度学习,机器学习文章来源地址https://www.toymoban.com/news/detail-611207.html

🌈4 Matlab代码、数据、文章

到了这里,关于【FFNN负荷预测】基于人工神经网络的空压机负荷预测(Matlab代码实现)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于人工兔算法优化的BP神经网络(预测应用) - 附代码

    摘要:本文主要介绍如何用人工兔算法优化BP神经网络并应用于预测。 本案例数据一共2000组,其中1900组用于训练,100组用于测试。数据的输入为2维数据,预测的输出为1维数据 2.1 BP神经网络参数设置 神经网络参数如下: 2.2 人工兔算法应用 人工兔算法原理请参考:https://b

    2024年02月10日
    浏览(44)
  • 【人工智能】使用Python构建神经网络模型预测房价

    目录 一 、实验目的 二 、实验内容 三 、实验原理 四 、实验过程 数据处理 1.1数据读入 1.2缺失值处理 1.3数据归一化 1.4数据集乱序 1.6数据集分批次 模型设计与配置 2.1 构建前向网络结构,定义假设空间 2.2初始化参数w和b,使用标准正态分布随机生成 训练网络 3.1外层循环

    2024年02月03日
    浏览(43)
  • 基于双向长短期神经网络BILSTM的指数预测,基于gru神经网络的指数预测

    目录 背影 摘要 LSTM的基本定义 LSTM实现的步骤 BILSTM神经网络 基于双向长短期神经网络BILSTM的指数预测,基于gru神经网络的指数预测 完整代码:基于双向长短期神经网络BILSTM的指数预测,基于gru神经网络的指数预测(代码完整,数据齐全)资源-CSDN文库 https://download.csdn.net/d

    2024年04月24日
    浏览(57)
  • 基于BP神经网络的定位算法,基于BP神经网络定位预测

    摘要 BP神经网络参数设置及各种函数选择 参数设置 训练函数 传递函数 学习函数 性能函数 显示函数 前向网络创建函数 BP神经网络训练窗口详解 训练窗口例样 训练窗口四部详解 基于BP神经网络的定位算法,基于BP神经网络定位预测 代码下载:基于BP神经网络的定位算法,基

    2024年02月02日
    浏览(45)
  • 基于长短期神经网络的可上调容量PUP预测,基于长短期神经网络的可下调容量PDO预测,LSTM可调容量预测

    目录 背影 摘要 代码和数据下载:基于长短期神经网络的可上调容量PUP预测,基于长短期神经网络的可下调容量PDO预测,LSTM可调容量预测(代码完整,数据齐全)资源-CSDN文库 https://download.csdn.net/download/abc991835105/88230834 LSTM的基本定义 LSTM实现的步骤 基于长短期神经网络的可

    2024年02月07日
    浏览(36)
  • 基于BP神经网络的风险等级预测,BP神经网络的详细原理,

    背影 BP神经网络的原理 BP神经网络的定义 BP神经网络的基本结构 BP神经网络的神经元 BP神经网络的激活函数, BP神经网络的传递函数 代码链接:基于BP神经网络的风险等级评价,基于BP神经网络的风险等级预测(代码完整,数据齐全)资源-CSDN文库 https://download.csdn.net/download

    2024年02月06日
    浏览(44)
  • 基于长短期神经网络的风速预测,基于LSTM的风速预测

    目录 背影 摘要 LSTM的基本定义 LSTM实现的步骤 基于长短期神经网络LSTM的风速预测 完整代码: https://download.csdn.net/download/abc991835105/88171311 效果图 结果分析 展望 参考论文 风速预测是一种比较难的预测,随机性比较大,长短期神经网络是一种改进党的RNN神经网络,克服了梯度

    2024年02月14日
    浏览(45)
  • 基于PyTorch神经网络进行温度预测——基于jupyter实现

    导入环境 读取文件 其中 数据表中 year,moth,day,week分别表示的具体的时间 temp_2:前天的最高温度值 temp_1:昨天的最高温度值 average:在历史中,每年这一天的平均最高温度值 actual:这就是我们的标签值了,当天的真实最高温度 friend:据说凑热闹 查阅数据维度 时间维度数据进

    2024年04月14日
    浏览(30)
  • 169基于matlab的小波神经网络预测

    基于matlab的小波神经网络预测,通过权值参数更新得到误差较小模型,进行多输出单输出预测。输出预测可视化结果。程序已调通,可直接运行。 169matlab小波神经网络预测 多输入单输出 (xiaohongshu.com)

    2024年02月22日
    浏览(38)
  • 基于深度信念神经网络+长短期神经网络的降雨量预测,基于dbn-lstm的降雨量预测,dbn原理,lstm原理

    背影 DBN神经网络的原理 DBN神经网络的定义 受限玻尔兹曼机(RBM) LSTM原理 DBN-LSTM的降雨量预测 基本结构 主要参数 数据 MATALB代码 结果图 展望 DBN是一种深度学习神经网络,拥有提取特征,非监督学习的能力,通过dbn进行无监督学习提取特征,然后长短期神经网络LSTM进行训练

    2024年02月13日
    浏览(35)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包